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D
eformable object manipulation (DOM) is an 
emerging research problem in robotics. The 
ability to manipulate deformable objects endows 
robots with higher autonomy and promises new 
applications in the industrial, services, and 

health-care sectors. However, compared to rigid object ma-

nipulation, the manipulation of deformable objects is consid-
erably more complex and is still an open research problem. 
Addressing DOM challenges demands breakthroughs in al-
most all aspects of robotics: hardware design, sensing, (de-
formation) modeling, planning, and control. In this article, 
we review recent advances and highlight the main challenges 
when considering deformation in each subfield. A particular 
focus of our article lies in the discussions of these challenges 
and proposing future directions of research.
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Background
Until now, object rigidity has been one of the common 
assumptions in robotic grasping and manipulation. Strictly 
speaking, all objects deform upon force interaction. Rigidity is 
a valid assumption when object deformation can be neglected 
in a task. Nevertheless, many objects that need to be manipu-
lated by robots present nonnegligible deformation: from 
microsurgical operation to challenging industrial assemblies.

Robots need to be capable of manipulating deformable 
objects to operate in human environments. This capability 
would benefit many application fields; however, it also poses 
fundamental research challenges. In this article, we consider a 
generalized concept of manipulation where grasping is also 
part of the task. We will refer to the problem as DOM.

The tasks involved in DOM cover a broad spectrum (see 
Figure 1). They include dressing assistance in elderly care, 
cable harnessing in industrial automation, harvesting and 
processing fruit and vegetables in agriculture, and surgical 
operations in medical services, to name a few.

On the technical side, addressing deformation introduces 
the following technical challenges:

 ● the complication of sensing deformation
 ● the high number of degrees of freedom (DoF) of soft bodies
 ● the complexity of nonlinearity in modeling deformation.

We believe that overcoming these challenges is not only 
beneficial to DOM, but that it can further push toward 
developing autonomous robots that can operate in unstruc-
tured environments.

In recent years, there have been a few surveys on robotic 
manipulation of deformable objects. Some surveys focus on 
specific areas of DOM. The survey from Jiménez [6] focuses 
on model-based manipulation planning. More recently, Her-
guedas et al. [7] review works using multirobot systems for 
DOM, while the work of [8] considers multimodal sensing. 
The authors of [9] present the state of the art on deformable 
object modeling for manipulation. There are also two com-
prehensive surveys in the area. The survey in [10] reviews 
and classifies the state of the art according to the object’s phys-
ical properties. Lately, [11] reported most recent advances in 
modeling, learning, perception, and control in DOM.

In contrast with the mentioned surveys, which either focus 
on reporting the progress of the field or on a specific area, this 
article aims at identifying scientific challenges introduced by 
object deformations and at projecting crucial future research 
directions. As DOM is an emerging field of research where 
there is still much to be done, in this article, previous works 
and open problems are given equal weight. In addition, we 
dedicate one section to discussing practical challenges in vari-
ous applications of DOM. We believe the article is the first of 
its kind in the field of DOM.

A robotic framework designed to handle deformable 
objects usually consists of five key components: gripper and 
robot design, sensing, modeling, planning, and control (Figure 2). 
To position the current research and identify future trends, we 
conducted a survey on the future perspective of DOM. We 
shared the survey with people working in related fields at vari-
ous career stages. They were asked to rate the importance and 

research maturity of each of the five 
identified key components, from 1 to 4, 
with 1 being not important/low matu-
rity and 4 being very important/high 
maturity. We received 31 answers; they 
are summarized in Figure 3.

We consider promising directions 
of research as those that have the high-
est significance and the lowest research 
maturity. Based on the survey, sensing 
is the most promising one among all 
subareas. This is probably due to the 
current booming trend in deep learn-
ing, which has offered many new 
methods for processing sensory data. 
In addition, sensing is the prerequisite 
for subsequent steps, such as model-
ing, planning, and control.

(a) (b)

(c) (d)

Figure 1. Applications involving manipulation of deformable 
objects. (a) Dressing assistance [1], (b) cable harnessing [2], (c) 
fruit harvesting [3], and (d) suturing [4]. 
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Figure 2. A typical robotic framework for handling deformable objects. In this particular 
example, the framework addresses a wire harness [5].  
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Accordingly, the following sections of this article present 
these five research directions with recent works in the field 
and comments on the outlook and challenges ahead. We also 
provide a link from research to practical applications in the 
context of DOM and summarize key messages.

Gripper and Robot Design

Current Capability
Does the manipulation of deformable objects demand specif-
ic grippers as compared to the manipulation of rigid objects? 
Generally, yes (see Figure 4). Unlike rigid objects (which are 
mostly handled by standard grippers), deformable objects are 
handled with custom (and often designed ad hoc) grippers, 
e.g., a 3D printed gripper that enables cable sliding [5], a flat 
clip for holding towels [12], a cylindrical tool for pushing and 
tapping plastic materials [13], or a soft hand for manipulating 
organs [14]. Such diversity in grippers is a result of the large 
variety of deformable objects, which require different actions 
during manipulation. To avoid designing task-specific grip-
pers for DOM, human-like dexterity and compliance is 
desired. Recent works in this direction consider compliant 
design [15], [16] and show good potential for DOM tasks.

As for the robot itself, it is rigid in most works. In some 
cases, as in the surgical application showcased in [17]  
[Figure 4(e)], both the robot and object are deformable to 
ensure the safety of manipulation.

Challenges and Outlook
Improving dexterity is core to robot manipulation. The 
improvement can come from different research domains, 

such as accurate in-hand sensing or robust control, two 
aspects that we will detail in the sections “Sensing” and “Con-
trol,” respectively. In this section, our focus is on gripper/
robot hardware aspects.

3%

17%

10%

69%

Bachelor
Master
Ph.D.
Assistant/Associate/
Full Professor

4

3

2

1

M
od

eli
ng

Grip
pe

r/R
ob

ot

Sen
sin

g

Plan
nin

g

Con
tro

l

Importance Research Maturity

(b)

(a)

Figure 3. A summary of the outcomes of the survey on DOM. We 
received in total 31 answers. The respondents cover different level 
of qualifications, ranging from master students to full professors. (a) 
Highest qualifications of the respondents. (b) Means and variances 
of importance and research maturity ratings of each key component.
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Figure 4. Various robot grippers for DOM. (a) A tool for pushing and tapping on plastic materials [13], (b) flat clips for holding a towel 
[12], (c) a gripper allowing a cable to slide [5], (d) a soft hand for manipulating organs [14], and (e) a soft continuum manipulator 
interacting with a deformable material [17]. 

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on September 15,2022 at 02:06:35 UTC from IEEE Xplore.  Restrictions apply. 



70 •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •  SEPTEMBER 2022

One way of achieving such dexterity is to reproduce by 
design the most dexterous gripper: the human hand. An open 
question is whether the anthropomorphic design is in itself the 
optimal solution in all cases, especially in the context of DOM.

While having one dexterous gripper that can handle a 
variety of DOM tasks is appealing, it should be noted that 
additional constraints need to be considered in the design 
process for hygiene/safety in tasks such as food handling or 
surgery. For instance, for surgical applications, we are limited 
by the biocompatibility of the materials and actuators and by 
the reduced available space in minimally invasive surgery. In 
these cases, designing task-specific grippers is more appropri-
ate. Nonanthropomorphic soft grippers are another emerging 
area of research [18]. These grippers are promising for over-
coming the challenges associated with traditional fingered 
grippers in grasping rigid objects; yet, to date, their applica-
tion to DOM has received little attention.

Otherwise, one may use a standard gripper and provide 
the robot with suitable tools to be grasped and used according 
to the type of task at stake. This demands breakthroughs on 
the algorithmic side to make the robot capable of reasoning 
about proper tools for different tasks. Training the robot to 

have task-specific tool reasoning will enhance autonomy and 
enable the robot to realize more complex tasks.

Another area worth investigating is that of soft robots/
grippers since they have great potential for manipulating frag-
ile materials, such as organs or food, or for collecting biologi-
cal samples or fruits (see Figure 5). While traditional rigid 
robots need to exhibit compliant behavior when interacting 
with these objects, the inherent compliance of soft robots 
makes the task safe. This unconventional paradigm of using 
soft robots to manipulate soft objects will bring new challeng-
es in modeling and control as both the robot and the object 
are underactuated and difficult to model. One pioneering 
work in this direction is [21], which adapts a finite-element-
method (FEM) modeling-based inverse soft robot model 
with contact handling (proposed in [22]) for deformable 
object manipulation using soft robots.

An interesting research question to consider is whether 
methods can be transferred from one field to another. To be 
more specific, can methods for controlling/modeling soft 
robots be applied to manipulating deformable objects and 
vice versa? If so, as a community, it may be valuable to obtain 
a unified approach for working with both soft robots and 
deformable objects.

Sensing

Current Capability
In this section, we consider visual, tactile, and force sensing for 
DOM. Existing research relies on these three modes to esti-
mate the state of deformable objects. In most cases, vision pro-
vides global information about shapes on a large scale, while 
force and tactile sensing provide local information on both 
shape and contact. At the end of this section, we also discuss 
the research in contrast to this common practice, where global 
deformation properties are recovered using tactile sensing. It 
should also be noted that force information is particularly 
important in industrial settings, e.g., for assembly [23], [24].

Vision is used in tasks such as rope manipulation [25], 
[26] or cloth unfolding [27], [28], where the object exhibits a 
large global deformation. In these works, configurations of 
deformable objects were obtained from raw image readings. 
Although vision offers a global perspective of the object con-
figuration, visual data can be noisy in unstructured environ-
ments. It is then important to manage occlusions [12], [29]. 
Most of the aforementioned works are based on 2D vision; 
3D perception of deformable objects is more challenging. 
Existing works employ an FEM [30] or a combination of 
growing neural gas and particle graph networks [31] for bet-
ter tracking of the deformation. In a more recent study [32], it 
has been shown that a deep convolutional neural network 
(NN) for processing vision data can be used with small varia-
tions to process tactile data for deformable object recognition. 
Objects made of soft materials, such as human tissues and 
fruits, have a special force-displacement correlation upon 
contact. As a result, tactile sensing can be used to estimate the 
stiffness. In [33], the GelSight [34], a vision-based 

(a)

(b)

Figure 5. Two examples of interactions with fragile objects that 
could benefit from the use of soft robots. (a) Picking tomatoes 
[19]. (b) A custom 3D-printed soft robotic gripper, grasping 
mushroom coral [20]. 
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high-resolution tactile sensor, measures the 3D geometry of 
the contact surface and the normal/shear forces.

Note that the division of vision for global deformation and 
tactile sensing for local deformation is not absolute. The 
authors of [35] use vision to estimate the local deformation of 
objects during grasping and classify objects accordingly. In 
[36], high-resolution tactile sensing is used to estimate the 
physical properties of clothing materials through squeezing, 
assuming the robot can learn from the data about global prop-
erties of clothing according to a local sampling point. In [37], 
an example of servoing along a cable based on high-resolution 
tactile sensing is presented. Although vision is not used, the 
precise measurement of the local cable shape provides enough 
information to guide the robot motion on a small scale.

Challenges and Outlook
The main challenges for sensing are selecting appropriate sen-
sors for the DOM task and using the measurements to obtain 
meaningful object representations. Considering the high 
number of DoF of the deformable bodies, a fusion of different 
sensing modalities (vision, force and tactile) may be a promis-
ing direction to pursue in future research. Another research 
question to be answered is: What yields a good representation 
of the object configuration? We (acknowledgedly) do not 
have a complete answer to this; rather, we will elaborate on 
considerations when designing the representation.

The representation needs to be robust to noise and useful 
for reconstructing the objects’ configurations—even when 
data are partially unavailable. In vision, the most common 
noise is occlusion. How to generate a meaningful representa-
tion of these objects under self-occlusion is still an open prob-
lem in research. For rigid objects, one can carefully design the 
environment to avoid it. For deformable objects that exhibit a 
large global deformation, such as clothes and bed sheets, self-
occlusion is inevitable during manipulation. A promising 
direction to deal with occlusion and noise is the use of active/
interactive perception [38], [39]. With vision data from differ-
ent perspectives, we might be able to reconstruct an object’s 
configuration accurately, even under occlusion and noise.

Apart from the aforementioned challenges, choosing a 
good representation also involves leveraging two aspects:
1) the dimensionality of the representation
2) the accuracy of the representation.

Usually, the tradeoff depends on the task, relies on human 
intuition, and involves a trial-and-error process.

In end-to-end reinforcement learning settings, sensory 
data can be mapped directly to robot actions without explicit 
feature representations [40]. Human demonstrations can be 
used for making end-to-end learning more efficient. One 
example is reported in [41]. The authors use an improved 
version of deep deterministic policy gradients, trained with 20 
demonstrations, to make robots manipulate cloth. However, 
since such settings often require a manually designed cost/
reward function for learning, human demonstrations in this 
context can also be used for recovering the reward with 
inverse reinforcement learning.

Modeling

Current Capability
For robots to perform deformation tasks using sensory data, 
we need a model that captures the relationship between sen-
sor information and robot motion. A linear model character-
ized by Young’s modulus can be employed for describing 
elastic deformation. The two other classes of deformation are 
plastic and elastoplastic deformations. This classification 
serves well. However, since the model should be used for con-
trol, in this section, we prefer to distinguish between local and 
global models—a taxonomy that has clearer implications for 
control. We introduce the corresponding research and—at the 
end of the section— discuss the limitations of these models 
and present works that address them.

Most local models approximate the perception/action 
relationship via a Jacobian matrix (called an interaction 
matrix in visual servoing). Such a model is linear and can be 
computed in real time with a small amount of data. However, 
since it is a local model, it must be continuously updated 
during task execution. Model-updating methods include 
Broyden’s rule [17], receding horizon adaption [42], local 
gradient descent [43], QP-based optimization [44], and mul-
tiarmed bandit-based methods [45]. Another advantage of 
the Jacobian model is that one can design a simple controller 
by inverting it. However, since this controller is local, it oper-
ates via a series of intermediate target shapes [42], [44].

On the other hand, global models can be approximated 
with FEMs [46] and also (deep) neural networks (D)NNs. In 
contrast to simple linear models, (D)NN-based approaches 
benefit from stronger representation power in terms of accu-
racy and robustness [47]. Moreover, they can incorporate 
physics models and reason about object interaction [48]. 
These models can approximate highly nonlinear systems and 
have a larger validity range, solving (to some extent) the local-
ity issue of the linear models. Nevertheless, these complex 
nonlinear representations demand large amounts of data 
(which might not be available in some cases).

Whether analytical or learned models are used, their pre-
dictive power will be limited. They are either specialized to 
some class of tasks or learned from a set of training data. 
Especially for the learned models, we can never hope to col-
lect enough data to produce an accurate model in the entire 
state space (which is high dimensional). Thus, [49] and [50] 
have developed methods to reason about the validity of a 
(learned) model for a given state and action and have used 
these methods to reason about model uncertainty in planning 
and control. However, when the model is not precise, a 
replanning/recovery might be desirable. The authors of [51] 
introduce two NNs for learning and replanning the motion 
when the model is unreliable.

Challenges and Outlook
The complexity of modeling is manifested in the lack of simu-
lators. While most existing robotic simulators are capable of 
producing rigid body kinematics and dynamic behaviors, 
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only a fraction of them can handle deformation. One recent 
work, Softgym [52], was proposed for benchmarking DOM 
based on NVIDIA Flex. In the soft robotics community, 
SOFA [53] and ChainQueen [54] are example simulators. In 
the sections “Gripper and Robot Design” and then “Challeng-
es and Outlook,” we considered the interaction between soft 
robots and deformable objects. Thus, a unified simulator that 
is able to handle soft robots and objects and model their inter-
action might be desirable.

When choosing a model for control, one challenge of data-
driven deformation modeling is to balance the region of 
validity with the amount of data required for training. One 
possible direction is to combine a simple model with a com-
plex nonlinear model to form a hierarchical model. An exam-
ple of such structures is exploited in [55] for robust in-hand 
manipulation. For DOM tasks, we can have a linear model at 
the lower level and a (D)NN learning the full model at a high-
er level. The lower-level model can be learned in a few itera-
tions to enable instant interaction between the robot and 
object. The higher-level (D)NN can collect data and improve 
the model to enhance global convergence.

Planning

Current Capability
Planning aims at finding a sequence of valid (robot/object) con-
figurations and contributes to solving the problem of limited 
validity of local models, as discussed in the section “Modeling.”

Planners can operate in the objects’ configuration space 
and sometimes rely heavily on physics-based simulation. 
While the obtained plan can be visually plausible, it may be 
unrealizable for a specific object. Recently, McConachie  
et al. presented a framework that combines global planning 
without physics simulation, with local control [56]. For an 
elastic object, considering its energy is another way to do 
planning; in this direction, Ramirez-Alpizar et al. [57] pro-
posed a dual-arm manipulation planner optimizing the elas-
tic energy, for elastic ring-shaped object manipulation. For 
DOM tasks involving multiple robots, planning is important 
for coordination. Alonso-Mora et al. employed a distributed 
receding horizon planner for transporting tasks that require 
multiple robots [58]. More recently, the work of [59] learned 
a latent representation for semantic soft object manipulation 
that enables (quasi)-shape planning with deformable objects.

With learning from demonstration (LfD), the robot can be 
trained to manipulate deformable objects by an expert (usual-
ly a human). LfD encodes the robot trajectory and interaction 
force from human demonstrations [60], thus avoiding explic-
itly planning the motion. More recently, Wu et al. have pro-
posed a reinforcement learning scheme for DOM that does 
not require initial demonstrations [61].

Challenges and Outlook
A rigid object configuration can be described in space with 
6 DoF, whereas a deformable object configuration has a 
much higher number of DoF. To address this from the 

sensing algorithm side, one can find a compact representa-
tion from sensory data, as discussed in the section “Chal-
lenges and Outlook” under the section “Sensing.” An 
alternative that receives much less attention is the use of 
environmental contacts to constrain some DoF of deform-
able objects. Examples include the use of contact points in 
cable harnesses or that of flat surfaces when folding clothes. 
We argue that, instead of planning to avoid contacts—as 
most planners do—for deformable objects, we need to plan 
to make contact since this constrains the configuration and 
therefore simplifies the task.

Planning to grasp the correct point is often crucial in 
DOM tasks. For instance, grasping at convex vertices of the 
clothes guarantees stability and facilitates the task [62]. 
Regrasp planning is highly relevant when considering tasks 
that require multiple robotic arms. Additional challenges 
come from perception since as soon as the robot releases one 
or more grasp(s), the object is likely to change its configura-
tion. We rely on sensing to track configuration changes and 
then plan accordingly.

Another important future work in planning is reasoning 
about a deformable object at a semantic level. What does it 
mean for a cloth to be folded? What does it mean for an 
object to be wrapped in a paper? We cannot manually specify 
all of the configurations of the deformable object to use as 
goals in these kinds of tasks. Instead, we need a way to learn 
the meaning of semantic concepts, such as folded or wrapped, 
so that we can determine if a given configuration of the object 
is a valid goal.

Control

Current Capability
Control aims at designing inputs for the robot to realize the 
planned motion. The type of controller is usually decided by 
the task. For instance, the authors employed a data-driven 
model predictive control [63] for cutting considering its pre-
dictive nature and the lower demand for manual tuning. For 
safe interaction in minimally invasive surgery, the authors of 
[64] used a fuzzy compensator with impedance control. For 
controlling large deformations, Aranda et al. proposed a 
shape-from-template algorithm concerning its low-dimen-
sional representation (using the template) and robustness 
against occlusion [65].

Several works focus on shape control. While global mod-
els directly map sensor data to robot motion, local models 
must be inverted to design the robot motion controller (see 
the section “Modeling”). Several applications of the control 
scheme for robotic manipulation of deformable objects can 
be found in computer, communication, and consumer man-
ufacturing [66], [67], where vision-based controllers were 
proposed to drive the robot to automatically grasp/contact a 
deformable object and then carry out the task of active 
deformation or separation/sorting. Other works consider 
the concept of diminishing rigidity to perform deformation 
control [68], [69].
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Challenges and Outlook
Feedback control has been commonly used in most DOM 
works by referring to the state of the object to achieve the task. 
Note that this state is retrieved from the output of its deforma-
tion model and measured with sensors, and that output and 
state do not necessarily have the same representation and 
dimension. Furthermore, we can distinguish between model-
based and model-free control. Because of the complexity of 
modeling the deformation, when using the model to derive 
control policies, the controller has to take into account that 
the model will be inaccurate or even wrong.

Model-free approaches do not require information about 
the deformation parameters or the structure of the deforma-
tion model. Examples include LfD or (deep) reinforcement 
learning, where the challenges are efficient use of data and 
policy generalization. To address these issues, we can com-
bine offline and online learning methods. In the offline 
phase, the supervised network can be trained to estimate the 
model by collecting pairs of a series of predefined inputs 
(e.g., the velocity of the robot end effector) and the deforma-
tion of the object. The estimated model in the offline phase 
can be further updated online during the control task with 
adaption techniques (e.g., adaptive NNs), to compensate for 
the errors due to insufficient training in the offline phase or 
the changes of the deformation model. Hence, both comple-
ment each other.

When multiple features on the deformable object are con-
trolled in parallel, the system becomes underactuated, with 
fewer control inputs than error outputs. Then, the robot con-
troller should be able to deal with the conflicts between multi-
ple features or decouple the control of multiple features in a 
sequential manner to guarantee controllability.

In addition, because of the deformation during control, 
the contact between robot end effectors and deformable 
objects may not always be maintained. Most existing sys-
tems require a certain level of human assistance to initiate 
the contact or to reestablish it, if it is lost during the task. 
To improve autonomy, the robot controller should auto-
matically grasp or touch the object first, whenever physi-
cal contact is lost, laying the foundation of the subsequent 
manipulation task. Such a capability would allow the 
robot to effectively deal with the unforeseen changes due 
to deformation.

Practical Applications
In the previous sections, we centered our discussion from a 
scientific point of view. Here, we instead discuss challenges in 
various applications of DOM.

 ●  Automatic laundry: A typical domestic application of 
DOM is laundry folding. A Tokyo-based company 
unveiled its prototype laundry-folding robot in 2015. 
However, the company was announced bankrupt in 2019 
due to lack of funding for development and difficulties in 
improving the robot to reach a satisfactory level [70]. 
Although cloth folding has been tackled in a few previous 
studies [71]–[74], it remains largely a laboratory product 

(limited to structured environments, certain types of 
clothes, and so on). Commercializing the technology 
seems to require substantial efforts.

 ●  Assistive dressing: Robotic dressing assistance has the 
potential to become an important technology due to the 
pressing need for aging society support. Research can 
roughly be categorized into simulation-based learning 
[75], [76] and imitation learning [77] approaches. Exam-
ples are dressing support for shoes [78], shirts [79]–[81], 
and pants [an example of shirt dressing is shown in Fig-
ure 6(a)]. However, several technical and societal chal-
lenges have to be addressed before robot-assisted dressing 
will become a broadly used DOM technology: physical 
safety for the human; modeling and prediction of the 
human–robot interaction; robustness for large variations 
of geometric and dynamic properties of textiles; low-cost, 
highly reliable robot hardware; and human acceptance of 
such technologies.

 ●  Surgical robotics: Soft tissue manipulation is mainly per-
formed with teleoperation using solely visual feedback. 
Autonomous manipulation, however, still has a long way to 
go, and it demands developing various types of DOM hard-
ware and software [Figure 6(c)]. The biggest concern for an 
autonomous solution is the safety of operation. A soft robot 
with intrinsic compliance will probably enhance safety.

 ●  Food production and retail: Handling deformable objects is 
a major challenge in the whole chain from production to 
sales. In an agricultural setting, automated harvesting of 
fruits and vegetables requires interactions with deformable 
objects that are at the same time easy to damage, which 
immediately decreases their value and shelf life. Frequently, 
these products also undergo an intermediate processing 
step (e.g., filleting and packaging of meat). More generally, 
deformable products, e.g., with everything packaged in 
flexible bags [Figure 6(b)], need to be handled in ware-
houses, in order picking, and in restocking. Solutions for 
specific applications and products have been developed, 
but more complex objects and operations still are frequent-
ly handled by human workers.

 ●  Marine robotics: Underwater grasping has been led by the 
oil and gas industry for decades, resulting in heavy 
machines with strong grippers for inspection and main-
tenance tasks [Figure 6(d)]. Gradually, the demands 
turned to more detailed tasks in marine biology, sedi-
mentology, and archaeology [Figure 6(e)]. Another 
DOM application can be found in tethered robot umbili-
cal modeling and control. A negative buoyancy cable can 
be modeled in real time as a simple catenary shape and 
tracked to control a tethered remotely operated vehicle 
(ROV) [82].

Summary and Key Messages
The revolution of robots from automating repetitive tasks to 
humanizing robot behaviors is taking place with better 
hardware, robust sensing capabilities, accurate modeling, 
increasingly versatile planning, and advanced control. 
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Manipulation of deformable objects breaks fundamental 
assumptions in robotics, such as rigidity, known dynamics 
models, and low-dimensional state space. It, therefore, 
requires breakthroughs in all of the areas mentioned previ-
ously and serves as a great testbench for novel ideas in both 
robotic hardware and software.

In terms of hardware, recently, the community has been 
increasingly shifting from rigid to soft robots. Robotic manip-
ulation is also gradually shifting from rigid to deformable 
objects. One open question is: Are some of the algorithms in 
one field transferable to the other? We believe the interaction 
between a soft robot and a deformable object will bring more 
challenges to the robotic community.

Sensing plays a vital part in the robotics manipulation of 
deformable objects. Depending on the nature and complexity 
of the task, one or multiple fused sensing modes may be 
needed. Machine learning will facilitate the development of 
robust algorithms to process data from different sensors to 
generate meaningful representations of deformation.

All models are wrong; some are useful. We do not believe 
there exists a “best” model for deformation. While models 
increasingly tend to be data driven, we would like to draw the 
readers’ attention to the importance of physical models for 
studying interactions.

For planning, current research lacks the high-level seman-
tic reasoning of the DOM task. Furthermore, while often the 
purpose of planning is to avoid contact and collision, we 
argue that, for DOM, it can be very useful to plan for contact.

Underactuation is a key challenge of DOM because of the 
deformable bodies’ high DoF. Another practical issue intro-
duced with deformation is contact loss during manipulation. 
Future controllers should be able to detect contact loss and 
react accordingly.
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