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Efficient Robot Skill Learning with Imitation from a
Single Video for Contact-Rich Fabric Manipulation

Shengzeng Huo, Anqing Duan, Lijun Han, Luyin Hu, Hesheng Wang and David Navarro-Alarcon

Abstract—Classical policy search algorithms for robotics typi-
cally require performing extensive explorations, which are time-
consuming and expensive to implement with real physical plat-
forms. To facilitate the efficient learning of robot manipulation
skills, in this work, we propose a new approach comprised of
three modules: (1) learning of general prior knowledge with
random explorations in simulation, including state representa-
tions, dynamic models, and the constrained action space of the
task; (2) extraction of a state alignment-based reward function
from a single demonstration video; (3) real-time optimization
of the imitation policy under systematic safety constraints with
sampling-based model predictive control. This solution results in
an efficient one-shot imitation-from-video strategy that simplifies
the learning and execution of robot skills in real applications.
Specifically, we learn priors in a scene of a task family and
then deploy the policy in a novel scene immediately following
a single demonstration, preventing time-consuming and risky
explorations in the environment. As we do not make a strong
assumption of dynamic consistency between the scenes, learning
priors can be conducted in simulation to avoid collecting data in
real-world circumstances. We evaluate the effectiveness of our
approach in the context of contact-rich fabric manipulation,
which is a common scenario in industrial and domestic tasks.
Detailed numerical simulations and real-world hardware experi-
ments reveal that our method can achieve rapid skill acquisition
for challenging manipulation tasks.

Index Terms—Skill learning, one-shot imitation learning, im-
itation from observations, contact-rich tasks, safe policy search.

I. INTRODUCTION

REINFORCEMENT learning (RL) algorithms are becom-
ing more and more popular since they allow robots

to learn by trial and error, avoiding troublesome modeling
of specific situations [1]. However, it is difficult to directly
transfer these RL methods to robots since these algorithms
generally require millions of interactions [2]. Previous works
have leveraged imitation learning to speed up the learning
process, such as pouring [3], nonprehensile manipulation [4],
and contact-rich manipulation [5]. Most of them require a
large database comprising state-action tuples and additional
explorations for policy learning. However, these two require-
ments are difficult to satisfy for a complex manipulation task
in an unstructured environment since: (1) high-dimensional
visuomotor policy is data-hungry [6]; (2) random explorations
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Figure 1. Scenarios of contact-rich fabric manipulation. (a) Packing. (b)
Covering. (c) Hanging.

in unstructured environments are dangerous for real robots
[7]. An ideal imitation scenario is one which is similar to
the way humans learn from others, e.g., a student observes
and imitates a skill from a teacher [8] or even a video on
the web [9]. Achieving this level of sensorimotor dexterity
is precisely our goal in this paper. We develop a one-shot
observational imitation approach that enables robots to deploy
a task immediately.

One of the factors contributing to human beings’ strong
imitation ability is that we extract the temporal abstraction
from demonstrations rather than precise state-action pairs [10].
Motivated by this understanding, our core idea of efficient
robot skill learning is to follow the state sequences of a
new scene in the demonstration as closely as possible. Two
strategies are designed to achieve this goal: (1) learning
general prior knowledge about the task family in a simulated
scene; (2) taking long-term estimated resulting states under
constraints into account with MPC. We emphasize that there
are differences between sim-to-real RL methods [11] and our
efficient skill-learning approach. The first one aims to create a
simulation configuration that closely resembles the actual task
before learning a policy for that specific activity. Compared
with them, our goal is to enable robots to deploy a new scene
in the task family, which does not appear in the simulation. The
benefits of our formulation are as follows: (1) our policy can
generalize to different scenes within the task family efficiently
(with only a demonstration video); (2) we do not demand a
very realistic simulation environment and additional sim-to-
real skills.

Our approach is validated in the context of contact-rich
fabric manipulation, which means the deformable fabric needs
to interact with rigid objects and establish symbolic object-
object relationships with each other. Fig. 1 presents various
industrial and household scenarios of this task, revealing that
it is an essential skill for robots. We choose this task for
two main reasons. For one thing, it is difficult to solve with
the conventional end-to-end imitation learning methods since
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(1) a great scale of demonstrations is required due to the
high-dimensional state (infinite degrees of freedom of fabrics)
and action (bimanual manipulation) space; and (2) random
explorations should be prohibited due to the potential for
collisions in contact-rich environments. For another, the supe-
riority of our approach can be illustrated with this specification
since (1) transferring between various interaction scenarios
provides strong evidence of the model’s inference ability; (2)
the symbolic object-object association goal requires high-level
planning instead of mathematical approximation. The original
contributions of this work are:

• We formulate the efficient robot skill learning problem as
the process of adapting from learned priors of the task
family to a new scene.

• We design a state alignment-based reward function to
extract temporal abstraction from a demonstration video.

• We leverage a sampling-based MPC method to generate
promising and safe motions in imitation.

• We report a detailed experimental study to evaluate the
performance of the proposed approach.

In contrast with most algorithms in the literature, our
approach endows robots to perform a novel scene within the
task family effectively. Specifically, the guidance of the new
scene is only a single observational demonstration and robots
can conduct it immediately without any explorations. The
proposed approach could advance the development of efficient
robot skill learning.

The rest of this paper is organized as follows. Sec. II intro-
duces the related work. Sec. III states the problem formulation.
Following that, we explain the details of our methodology in
Sec. IV. Sec. V reports the validation experiments and the
corresponding analysis. Finally, Sec. VI concludes this article.

II. RELATED WORK

A. Imitation Learning from Observation

Standard imitation learning methods, either behavior
cloning (BC) or inverse reinforcement learning (IRL), assume
both observations and actions are available in the demon-
strations. In general, two methods are used to collect the
proprioceptive information of the robots. For one thing, oper-
ators directly contact and guide the robot through kinesthetic
teaching, which is not suitable for robots with multiple degrees
of freedom. For the other, robots are teleoperated by remote
control devices, such as VR [6] and mobile phones [12].
However, additional efforts of setting and training are required
for the operator, affecting the practicality in real applications.

To simplify the demonstration procedure, imitation from
observation (IfO) has garnered a great deal of attention, in
which only the observation sequence is required. However,
it brings additional challenges in imitation due to the lack
of action information. A natural solution is recognizing the
movement in the video to learn the policy in a conventional
manner (e.g. [13], [14]). Other researchers [15], [16] establish
auxiliary rewards for imitation through learning the represen-
tation and the correspondence of the observations. The main
drawback of the above methods is the requirement of many
demonstrations to guarantee generalizability. To learn a robot

skill efficiently, more and more researchers have switched their
focus to one-shot imitation learning.

B. One-shot Imitation Learning

One-shot imitation learning means robots are able to learn
from a single demonstration of a given task and then generalize
to new situations of the same task [17]. However, it is very
challenging due to data scarcity. One solution is to incorporate
imitation learning with RL to improve the robustness of the
policy with fine-tuning. [18] integrates a task-specific inverse
dynamic model into RL. [19] extracts the tool trajectory from
the video and aligns the simulated environment with the video
to initialize a policy for RL to learn. There are two main
drawbacks of this kind of method: (1) training robots in
the real world is challenging due to sample efficiency and
safety concerns. (2) learning in simulation necessitates a high
level of verisimilitude with the actual world and additional
techniques to deal with the sim-to-real gap. Other researchers
[20], [21] formulate this problem as visual servoing. [20]
iterates the pose aligning between the robot and the human
hand in the video; [21] obtains the approaching policy in a
self-supervised manner through backward learning from the
goal pose. However, the above methods hold strong task-
related assumptions (e.g. known specific parameters [20], and
proximity to goal pose [21]).

In addition, some researchers formulate one-shot imitation
in a meta-learning manner [22], which means learning a
general policy with few diverse demonstrations for different
tasks, then adapting the policy for a new task given a single
demonstration [3]. However, collecting such a big database
is time-consuming and troublesome, especially in reality. Our
work is built upon this formulation, in which we only learn
prior knowledge in a single scene of the task family through
random explorations and adapt to a novel scene according to
a demonstration video.

C. Contact-Rich Fabric Manipulation

Many researchers have addressed the robotic manipula-
tion of soft materials, see [23], [24] for recent reviews.
However, most existing methods (either model-based [25],
[26] or model-free [27], [28]) only consider shaping tasks
without complex contact with objects in structured environ-
ments. Contact-based manipulation of a deformable linear
object towards a desired shape is considered in [29], while
customized action primitives are required for the controller.
Although fabric manipulation has gained interest from several
researchers, most of them focused on laundry folding [30]
and flattening [31]. [32] estimates the model utility of fabrics
in unstructured environments, while the manipulation strategy
is only validated in simulation. The method in [33] solves
a bed-making task with strong assumptions about the initial
configuration and customized placing policy. [11] exploits
model-free reinforcement learning to learn a policy of hanging
a towel over a hanger. However, it requires a high degree
of verisimilitude in the simulation environment and a great
demand for exploration resources.
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Figure 2. The overview of our efficient robot skill learning approach. With the prior knowledge learning in the scene Q1 within the task family Q1 ∈ Q,
the model predictive control method generates motions for the novel scene Q2 ∈ Q guided by the reward function from the demonstration learning.

Due to the planning complexity of DOM, some researchers
(e.g. [34], [35]) have leveraged imitation learning to improve
the learning efficiency, while most of them require multiple
demonstrations comprised of state-action transitions. More-
over, most of them only deal with simple tasks in a structured
environment [34] or only implement the policy in simulation
[35]. Hence, there are still open questions about how to acquire
efficient robot skills for contact-rich fabric manipulation.

III. PROBLEM FORMULATION

For a robotic task in real-world, we formulate the problem
as a Partially Observable Markov Decision Process (POMDP)
represented by a tupleM = (S,O,A,P, R, ρ0, γ), where the
state S[t] ∈ S is unknown and its corresponding observation
is O[t] ∈ O. State transition function P(S[t+1]|S[t], A[t])
characterizes the probability of a switch from state S[t] to
S[t]+1 after executing action A[t] ∈ A and R(S[t], A[t]) is the
reward function. ρ0 is the initial state distribution and γ is the
discount factor.

For the reward function, we consider the sparse terminal
configuration, which is a common situation in robot tasks
[36]. This means that robots need to perform correct actions
continuously and finally complete the task to obtain a positive
reward. The specific definition is:

R(S[t], A[t]) =

{
1, if the task is completed
0, else

(1)

During the learning process, robots probably enter dangerous
states that cause catastrophic results, especially for safety-
critical applications [37]. Hence, we induce a cost function to
evaluate if an action leads to an unsafe state. Specifically, an
action A[t] is valid if its resulting state S[t+1] is safe, denoted
as:

C(S[t], A[t]) =

{
0, if S[t+1] ∈ SV
1, else

(2)

where SV ⊆ S is the safe state subset. According to this
definition, we constrain the feasible subset A[t]

V within the
entire action space A with respect to the current state S[t],
denoted as A[t]

V ⊆ A.
Constrained reinforcement learning is a general method

for policy search under certain conditions [37], which aims
to maximize the cumulative reward while limiting the cost
incurred from constraint violations:

π∗ = argmax
π

[JR(π)− JC(π)] (3)

where JR(π) = ET ∼π

[∑T
t=0 γ

tR
(
S[t], A[t]

)]
and JC(π) =

ET ∼π

[∑T
t=0 C

(
S[t], A[t]

)]
denote the expected return of

policy π with respect to the reward function R and the cost
function respectively.

However, there are two main problems when applying RL in
a real application: safe learning and sample efficiency. Human
supervision and manual reset are necessary to avoid unac-
ceptable catastrophes for robots, which are time-consuming
and labor-costing for operators due to sample inefficiency. To
deal with these issues, we formulate this problem as learning
priors in a scene Q1 of the task family Q1 ∈ Q and then
deploy a new scene of the same family Q2 ∈ Q with a
demonstration provided, as shown in Fig. 2. We leverage the
contact-rich fabric manipulation context to explain the idea of
the formulation. We consider the interactions between a piece
of fabric and different rigid objects as different scenes of the
task family Q ∈ Q. Specifically, Q1 in Fig. 2 is a contact-free
scene in simulation without rigid objects, while Q2 requests
the fabric to interact with a hanger to achieve the goal. The
details about the policy transfer from a scene Q1 to another
scene Q2 are delivered in Sec. IV.

Next, we introduce the specifications of the contact-rich
fabric manipulation context, whose objective is to establish
symbolic relationships between the deformable fabric and
the rigid object. For example, the fabric covers the furniture
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entirely and stably as shown in Fig. 1(b). The following
assumptions are made for the context:

• The fabric is initially placed on a table with a flattened
configuration and the rigid object is fixed on the table.

• The mask of the fabric in the scene is known.
• Dual arms rigidly grasp two ends of the fabric without

any loose contact during manipulation.
• Dual arms are kinematically controlled and the coordina-

tion between them and the camera is calibrated.
We make the assumption about the fabric since there are a
few existing works about unfolding [31] and the cloth region
segmentation [38] is not our focus. Other assumptions are
commonly used in deformable object manipulation [39].

Starting from a pre-grasped configuration, the manipulation
action of our dual-arm robot A = [aT

L aT
R] consists of the

relative movements of individual end-effectors, denoted as
aT = [∆x ∆y ∆z]. When the termination conditions are
reached, two end-effectors finish the movement and open the
grippers to release the fabric.

In summary, our goal is to maximize the accumulated
dense reward RE(S

[t], {S[j]
E }Tj=1) w.r.t. a H-length action

sequence X = (A[1], · · · , A[H]), while avoiding breaking out
the constraints C(S[t], A[t]), denoted as:

X ∗ = arg max
A[1],...,A[H]

E

[
H∑
t=1

γtRE

(
S[t], {S[j]

E }
T
j=1

)]
s.t. S[t+1] = P

(
S[t], A[t]

)
∀t ∈ {1, . . . ,H}

C
(
S[t], A[t]

)
= 0 ∀t ∈ {1, . . . ,H}

(4)

IV. METHODS

A. Overview

Our objective is efficient robot skill learning for a new
scenario, which eliminates the need for collecting a large
amount of data in reality and additional explorations in the
training phase following the demonstration. Fig 2 illustrates
the overview of our proposed approach, which can be divided
into three phases: Prior, Demonstration, and Control. In the
following, we first introduce the procedures of data collection
for Prior knowledge in simulation without human participa-
tion. Then, we explain how to extract the high-level temporal
abstraction of a novel scenario from a Demonstration video.
Finally, we introduce the details of our sampling-based model
predictive Control that is able to achieve an efficient and safe
policy in real-time.

B. Prior Knowledge

The objective of learning priors is to equip agents with
key knowledge about a task family Q, which is generalizable
and suitable for any scene within the task family Q ∈ Q. In
this paper, three kinds of prior knowledge are considered: (1)
state representation; (2) dynamic models, including forward
and inverse dynamics; (3) definition of the constrained action
space.

To avoid specific modeling, we learn the descriptors and
dynamics through neural networks in a data-driven manner.

(c)

Depth

MLP

MLP

MLP

FCN

(d)

(e)

(a) (b)

Figure 3. Graphical illustration of the priors learning procedure. (a) Biman-
ual manipulation in a contact-free scenario. (b) Details of the customized
keypoints and the constrained action space. The architecture of the neural
networks. (c) State representation fR. (d) State registration fA. (e) Forward
dynamics fD and inverse dynamics fI .

We collect the required data in simulation instead of reality
since (1) collecting real-world data is time-consuming and
costly; (2) simulation provides direct access to the state S[t]

of the system, avoiding manual labeling. For our contact-
rich fabric manipulation context, we learn priors in a contact-
free simulation scenario as shown in Fig. 3(a), in which
two virtual anchors act as grippers in a planar configuration.
The reasons for choosing this kind of configuration are (1)
simulating the complex fabric-rigid object interactions with
a high degree of verisimilitude is challenging to achieve; (2)
interactions between fabric and various rigid objects share little
similarity resulting in a poor generalization. The details about
the simulation specification are introduced in Sec. V-A.

A mask of fabric in an RGB image plays as the raw ob-
servation O[t] in our context. Fig. 3(b) shows our customized
state description with M keypoints S[t] = {s[t]p }Mp=1, which
is given directly in simulation. According to this semantic
descriptor, we define the constrained action space A[t] ∈ A[t]

V

with respect to an individual state S[t] for the entire contact-
rich task family Q. The basic principles of the constrained
action space are: (1) ensuring the safety of the robots; (2)
avoiding the severe self-occlusion of the fabrics during the
manipulation. In the following, we present the details of the
constrained action space.

As shown in Fig. 3(b), the positions of the end-effectors
after executing the movement are denoted as s′1 = s1 + aL

and s′2 = s2 + aR, respectively. Also, we define the edge
vectors sL = s1 − s3 and sR = s2 − s4 corresponding to
the actions A = [aT

L aT
R], respectively. The rules of avoiding

approaching dangerous states after executing an action A[t]

are:

• Two grippers keep an appropriate distance from each
other, avoiding over-stretching or severe self-occlusion:

τC × L < ||s′1 − s′2||2 < τF × L (5)



5

(a)

(b)

Figure 4. (a) Graphical explanation of the state alignment-based reward
function. The reward of a state S[t] is measured through registration with
the demonstration. The state S′[t] that passes the final instance in the
demonstration S

[T ]
E is penalized in the reward function. (b) The paradigm

of the acquisition of the prior action.

where L is the original length of the edge of the fabric,
τC and τF are the ratio thresholds to measure the distance
between two end-effectors with respect to L.

• The direction difference between the individual ac-
tion (aL,aR) and its corresponding edge of the fabric
(sL, sR) is constrained under the threshold τD:

max(< aL, sL >,< aR, sR >) < τD (6)

where < a, b > computes the angle between two vectors
and τD is an angle limitation threshold.

• The fabric locates within the workspace.
• Two grippers do not collide with the fixed rigid objects

in the environment (if any).
To avoid troublesome human intervention, we sample ran-

dom movements within the constrained action space A[t] ∈
A[t]

V at each time-step t. Through the random explorations,
we acquire several transitions storing in a dataset D =
(O[t], S[t], A[t], O[t+1], S[t+1]), where O[t] is the masked im-
age of the fabric and S[t] is the corresponding customized
keypoints. Based on the collected dataset D, we train
our data-driven models. Firstly, we learn the representation
fR(S

[t]|O[t]) with a Fully Convolution Network [29] (as
shown in Fig. 3(c)), which outputs the pixel coordinates of
the keypoints S[t] in the mask image. Then, we obtain the 3D
representation of the keypoints by querying the corresponding
depth value. Finally, two fully-connected networks are estab-
lished to approximate the forward fD(S[t+1]|S[t], A[t]) and
the inverse dynamics fI(A[t]|S[t], S[t+1]) of the system on the
basis of the predicted keypoints S[t], as shown in Fig. 3(e).
All the models are trained with the mean square error (MSE).

C. Demonstration Learning

Instead of learning an end-to-end imitation policy directly,
we emphasize the resulting state of each action since (1)
learning the state-action mapping is data hungry; (2) the

simulation-to-reality gap affects the performance of the end-
to-end policy in transfer; (3) the suitable action with respect to
a state to approach the ultimate goal is generally not unique,
especially for a high-dimensional task. As a result, we convert
the conventional end-to-end policy as searching for an optimal
action whose forecast resulting state is closest to the state
sequence in the demonstration. [40] holds a similar idea to
us, while they are interested in an imitation scenario whose
dynamics mismatch with the expert. Compared with them
[40], we consider a more complex scenario (inference to a
novel scene of the task family), and the imitation is conducted
immediately following a single demonstration video without
any additional explorations.

Given the T -length single observation-only demonstration
τE = {O[j]

E }Tj=1, we first obtain the corresponding states
{S[j]

E }Tj=1 with our representation model fR(S[t]|O[t]). Since
the goal of the contact-rich task is to establish the symbolic
relationship between the fabric and the rigid object, we set up
a coordinate frame associated with the pose of the rigid object
and represent all the states in this frame. The advantage of this
setting is that the imitation is platform-agnostic, regardless
of the configuration of sensors or actuators. Since the 6-
DOF pose recognition of a rigid object is not a focus of our
work, it is achieved through detecting a marker in real-world
experiments.

Fig. 4(a) explains the state alignment process. Specifically,
there are two critical issues to determine in the reward func-
tion: (1) estimate the temporal progress in the imitation; (2)
measure the spatial distance to the final goal.

For the first issue, we leverage the Intersection over Union
(IoU) index to measure the similarity DE(S

[t], Sj
E) between

the current state S[t] and the states in the demonstration
{S[j]

E }Tj=1.

DE(S
[t], Sj

E) =
S[t] ∩ Sj

E

S[t] ∪ Sj
E

(7)

However, there is no overlapped area between the state S[t]

and the state sequence in the demonstration in some cases,
which always happen at the early stage of the imitation. As
a result, the estimator fails to distinguish between various
states. Under this circumstance, we switch the similarity metric
DE(S

[t], Sj
E) to the Euclidean distance of the centers. Accord-

ing to the above metrics, the temporal progress estimation is
implemented with:

J = argmin
j

DE(S
[t], Sj

E) (8)

We assume the provided demonstration is optimal; thus the
imitator should follow the demonstration step-by-step. For this
sequential imitation, we take two aspects into consideration
for the second issue (as shown in Fig. 4(a), whose details
are: (1) Positive: the distance to the subgoal S

[J+1]
E , which

is the next state of our temporal progress estimation result in
the demonstration. (2) Negative: the distance to the final state
S
[T ]
E in the demonstration when the current state passes the last

state in the demonstration S
[T ]
E . The first term encourages the

agents to approach the next stage in the demonstration, while
the second term penalizes the actions when the resulting state
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crosses the ultimate state in the demonstration. This crossing
phenomenon (S′[t] in Fig. 4(b)) should be avoided since the
manipulation in the opposite direction is required to return the
state back to the common situation, which is not allowed in
the constrained action space.

We implement registration between the current state S[t]

and the subgoal S
[J+1]
E to quantify their Positive similarity.

A neural network fA(R,T |S[t], SJ+1
E ) is utilized to output

their relative transformation, including the rotation R and the
translation T . The detailed architecture is shown in Fig. 3(d).
This registration model is trained by taking the states in the
prior dataset D as the source and the demonstration {S[j]

E }Tj=1

as the target, respectively, whose goal is to minimize the MSE
between {S[j]

E }Tj=1 and the transformed source R · S[t] + T :

LA = ||R · S[t] + T − S
[j]
E || (9)

Based on the trained model, the distance scalar
DP (S

[t], S
[J+1]
E ) is obtained through integrating the rotation

R and the translation T :

DP (S
[t], S

[J+1]
E ) = |T |+ wR · |R| (10)

where R,T = fA(R,T |S[t], S
[J+1]
E ) and wR is the weight

ratio to balance the rotation and the translation. Here, the
rotation is represented with the Euler angle to correspond to
the translation with different axes.

Compared with positive distance DP (S
[t], S

[J+1]
E ), the neg-

ative distance DN (S[t], S
[T ]
E ) is triggered only when the

current state passes the last state in the demonstration, whose
definition is:

DN =


||S[t] − S

[T ]
E || J > T − 2 ∧

||S[t] − S
[T ]
E || < ||S[t] − S

[T−1]
E ||

0 else
(11)

Taking the above elements into consideration, the state
alignment-based reward is denoted as:

RE

(
S[t], {S[j]

E }
T
j=1

)
= J−wP ·DP (S

[t], S
[J+1]
E )

− wN ·DN (S[t], S
[T ]
E )

(12)

where wP and wN are the weight ratio of the positive distance
and the negative distance, respectively.

D. Model Predictive Control

Incorporating the prior knowledge from Q1 ∈ Q, we hope
that our robots deploy a novel task Q2 ∈ Q immediately after a
demonstration video is given without any explorations. To this
end, we take the safety issues of real robots into consideration
and formulate the policy search as a constrained optimization
problem. MPC is an effective method to deal with this issue.
For example, [41] considers the robotic visual servoing sys-
tem’s input and output constraints, while it depends on an
analytical expression of the task. [37] studies the safe RL
problem with sparse indicator signals for constraint violations.
However, it requires a few violation budgets to explore the
environment and only deals with a task with original dense
rewards in simulation. In this paper, we extend this method

Algorithm 1: State Alignment-driven MPC
Input: Prior models (fR, fD, fI), Noise distribution
ϵ ∼ N (µ,Σ)

Output: Solution A[t] with the highest reward
Collect the observation-only demonstration {O[j]

E }Tj=1

Obtain the state alignment-based reward function
R(S[t], SE)← Eq. 12

while is not terminated do
Get the action prior X̂ [t] ← Eq. 13
while the convergence is not met do

Sample N solutions Ω ∈ {Xi}Ni=1

Evaluate the accumulated reward R(X ;S[t])
and the cost C(X ;S[t]) for each solution.

Select and sort the feasible set ΩV ⊆ Ω.
Update the parameters (µ,Σ)← Eq. 14

for efficient robot skill learning in reality in three aspects:
(1) customize a proper reward function and a cost function
for safe and robust imitation from observation; (2) acquire a
prior action to improve the efficiency of the sampling-based
controllers; (3) design a termination classifier that predicts if
the imitation has been completed.

Taking the future expectation into consideration, MPC
strives to obtain an h-length action sequences X [t] =
{A[t+k]}h−1

k=0 through solving an open-loop optimal control
problem. To enable real-time control, it is important to have a
high computation efficiency for each optimization step. The
sampling-based MPC approach in [37] searches within the
entire action space A, resulting in the low efficiency of the
iteration scheme for a high-dimensional control policy. To
resolve this problem, we obtain a prior action sequence X̂
acting as a baseline to narrow down the search space. The
procedure of this paradigm is shown in Fig. 4(b). For the
current state S[t], the subgoal planner fG(S

∗|S[t], {S[j]
E }Tj=1)

outputs a target S∗, which is actually S
[J+1]
E computed with

our temporal progress estimation model in Eq. (8). Then we
acquire an estimated action Â[t] at the current timestep t with
the inverse dynamic model fI .

Ât = fI(S
[t], S∗), S∗ = SJ+1

E (13)

Since this imagined action will not be executed actually, we
predict the achieving state Ŝ[t+1] with the forward dynamic
model fD. Finally, this estimated state Ŝ[t+1] will act as the
new S[t] to start another new loop. The above procedure
iterates h steps to acquire a complete action sequence baseline
X̂ = {Â[t+k]}h−1

k=0 .
Based on the prior action sequence X̂ , each candidate of

the sampling set X ∈ Ω for the constrained optimization is
generated through integrating the noise with it X = X̂ + ϵ.
In particular, ϵ is sampled from a n-dimensional factorized
multivariate Gaussian distribution ϵ ∼ N (µ,Σ), where µ is
the mean vector and Σ is a diagonal covariance matrix.

Next, the accumulated performance of each solution
X ∈ Ω is evaluated with our customized reward function
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RE

(
S[t], {S[j]

E }Tj=1

)
and the cost function C(S[t], A[t]):

R
(
X ;S[t]

)
=

h∑
k=1

γk−1RE

(
S[t+k], {S[j]

E }
T
j=1

)
C
(
X ;S[t]

)
=

h∑
k=1

C
(
S[t+k−1], A[t+k−1]

) (14)

where S[t+k] = fD(S[t+k−1], A[t+k−1]),∀k ∈ {1, · · · , h} is
predicted by the dynamic model fD(S[t+1]|S[t], A[t]). Then,
we select the feasible solutions of all the candidates ΩV ⊆ Ω
whose accumulated cost is zero. We sort these feasible so-
lutions ΩV and select the top samples to update the noise
distribution ϵ ∼ N (µ,Σ) for the next iteration i+ 1 as:

µ[i+1] ← (1− β)µ[i] + βµV

Σ[i+1] ← (1− β)Σ[i] + βΣV

(15)

where β is a hyper-parameter to determine the update portion
for each iteration, µV and ΣV are the mean and the covariance
of the noise corresponding to the feasible set ΩV . The iteration
scheme is stopped when the optimal solution is feasible
C
(
X ;S[t]

)
= 0 and the variance of the noise ϵ reaches the

convergence:

maxΣ < τC (16)

As a receding horizon control method, agents only apply
the first input in the solution while others are discarded.

The outline of the control law is presented in Alg. 1. After
observing a single demonstration video, dual arms execute
the generated motion from the controller at each time-step
t to approach the ultimate goal continuously. An episode is
terminated and the grippers are released if one of the situations
occurs: (1) no feasible action under cost constraints is found;
(2) exceeding the maximum exploration steps; (3) the goal
is considered as finished from the terminal classifier. Since
the goal specifications are diverse in the task family and
challenge to model accurately in some complex instances, we
instead exploit the similarity between the achieved state S[t+1]

and the final state in the demonstration S
[T ]
E to classify the

goal completion. Specifically, the task is considered finished
when two conditions are satisfied simultaneously: (1) the
IoU between S[t+1] and S

[T ]
E is larger than the pre-defined

threshold τI ; (2) the temporal progress estimation (Eq. (8)) of
S[t+1] matches with S

[T ]
E .

V. RESULTS

To assess our strategy comprehensively, we undertake sta-
tistical comparisons of our approach versus baselines and
ablations in simulation. We begin by outlining the details
of the simulation and a comparison study with several base-
lines. Then, an ablation study is implemented to evaluate the
necessity of each component in our approach. Finally, we
demonstrate the practicality of our method for efficient robot
skill learning in real applications.

Prior Knowledge

(c)

Box

Hanger

Anchor

Fabric
Novel Scenarios 

(b)

(a)

Figure 5. Screenshots of the simulation environment. (a) Contact-free
configuration. (b) Box: Cover a box. (c) Hang: Hang up a Fabric.

(a) (b)

Figure 6. The training and validation errors for the prior models. (a)
Representation, forward and inverse dynamics. (b) Registration.

A. Simulation Setting

Fig. 5 illustrates our simulation environment based on DeDo
[42], in which fabric is represented as a deformable grid mesh
with 256 vertices. Two anchors attached to the corners of the
fabric rigidly are used to render the grasping of two end-
effectors.

To train the prior models in Sec. IV-B, we generate 10000
transitions (O[t], S[t], A[t], O[t+1], S[t+1]) through sampling
random actions within the valid space Av at each time-step t,
as shown in Fig. 5(a). Note that there are no rigid objects to
interact with the fabric in this environment.

Two common contact-rich fabric manipulation scenarios,
namely covering a box (Box) and hanging a towel (Hang), are
established in simulation to evaluate the performance of the
methods, as shown in Fig. 5(b) and Fig. 5(c), respectively. Note
that these two environments are used to evaluate the algorithm
instead of learning the specific models to transfer to the same
task in reality. In the simulation, we provide the demonstration
by controlling the anchors while the action information is
not recorded. Rigid objects in both environments are fixed
on the table. Each task is considered as successful if the
symbolic relationship between the fabric and the rigid object
is established after releasing the grippers. Starting from a pre-
grasp configuration, the virtual grippers move and release at
the end of an episode.

B. Comparisons with Baselines

In this section, we first present the achieved results of
our approach. Then, we compare our approaches with other
baselines.
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(a)

(b)

Figure 7. The scenarios of the contact-rich fabric manipulation tasks in simulation. (a) Box. (b) Hang.

(b)(a)

(c) (d)

Figure 8. The Chamfer distance comparison of several baselines. (a) Box.
(b) Hang. The accumulated return comparison in the ablation study. (c) Box.
(d) Hang.

The training and validation loss for the prior models (state
representation and dynamic models) and the registration model
for demonstration learning are visualized in Fig. 6(a) and
(b) respectively. All of the training only requires 20 epochs.
To analyze our approach in detail, we provide two typical
successful examples of individual contact-rich tasks in the
trials, visualized in Fig. 7(a) and (b) respectively. With a
random initial configuration, the agents strive to align the
states of the fabric to the state sequences in the demonstration.
When the fabric is close to the rigid object, two virtual end-
effectors follow the state sequences to lift up the object to
avoid obstacle collision. The attachment interactions disappear
when the termination classifier returns a positive value and the
fabric falls down slowly due to its gravity.

The goal of our approach is efficient robot skill learning
without access to the actual scenario in the training phase.
Specifically, robots learn the control policy from an offline
simulated dataset instead of explorations in the exact environ-
ment. Moreover, robots should distill the learned knowledge
in a scene of the task family and adapt to a new scene guided
by a single observational demonstration. To this end, our
approach incorporates prior knowledge and a state-alignment
reward function into the sampling-based MPC method to
obtain a safe and robust control policy. To show the substantial
improvements in our methods corresponding to the above
arguments, we compare our method against various baselines,

including Zero [43], CFM [44] and TCN [45]. The details of
individual baselines are:

• Zero learns a goal-conditioned skill policy with a forward
consistency loss and then mimics the expert from a
sequence of demonstration images.

• CFM optimizes the visual representation and the dy-
namics with contrastive learning and then implements a
model-based one-step optimal predictive control.

• TCN disambiguates temporal changes in the demonstra-
tion videos to provide a reward function for agents’ policy
search.

For a fair comparison, all the data-driven baselines share the
same collected dataset D in simulation with respect to the
task Q1 ∈ Q and a demonstration video for a novel task
Q2 ∈ Q. In addition, all the models are multi-layer perceptions
(MLP) with two hidden layers of size 256 followed by ReLU
activation functions.

Multiple trials are conducted to thoroughly assess the per-
formance of the baselines. To evaluate the contact-rich fabric
manipulation task performance quantitatively, we select Cham-
fer distance error [46] as a metric to compare the achieved
observation O[t] and the ultimate observation in the expert
demonstration O

[T ]
E , whose definition is:

dCD =
1

O1

∑
x∈O1

min
y∈O2

∥x−y∥22+
1

O2

∑
y∈O2

min
x∈O1

∥y−x∥22 (17)

where O1 and O2 are two downsampled point clouds. Specifi-
cally, we acquire the 3D point cloud of the fabric by querying
the corresponding depth value of the mask in the visual
observation and down-sampling them to N = 200 points
equally.

Fig. 8(a) displays the Chamfer Distance curve for different
baselines and Table I displays their success rates. Our method
outperforms other baselines with respect to two individual
tasks in success rate, while is comparable to TCN and Zero
in terms of Chamfer distance in two tasks respectively. In
the following, we present an analysis of this result. With
an embedding model to distinguish different states in the
space, the spatial and temporal connection between them is
not considered in CFM, resulting in poor performance in
this complex sequential manipulation task. We consider the
failure of TCN is caused by the scarcity of data in a single
demonstration, which hinders it to encode the temporal dis-
tance between the states and goal accurately. Without a long-
term prediction, it is easy for Zero to trap in a local distance
minimum to the ultimate goal. In addition, the comparable
performance in terms of Chamfer Distance is mainly due to
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Table I
COMPARISONS BETWEEN DIFFERENT METHODS

Method box hanger
Rate % µIoU σIoU Rate % µIoU σIoU

Zero 1.8 0.02 0.01 0.0 0.00 0.00
CfM 0.0 0.00 0.01 1.4 0.02 0.12
TCN 6.6 0.08 0.22 2.4 0.03 0.14

No MPC 0.0 0.00 0.01 3.0 0.03 0.17
No Prior 14.4 0.15 0.33 7.4 0.07 0.24
No Cost 3.0 0.03 0.16 2.2 0.02 0.14

Our 81.9 0.74 0.38 72.7 0.69 0.42

µiou and σiou are the mean and the variance of IoU, respectively.

the constraint awareness in our approach. Based on the state
alignment reward function, our approach seeks to reduce the
error between the achieved results and the state sequences in
the demonstration video step-by-step in a safe way under the
cost function. However, the above baselines generate motions
to go straight to the final goal. Although they can achieve a
relatively small distance from the target, the desired symbolic
object-object relationship is not established, resulting in low
success rates. In other words, Chamfer Distance is only an
auxiliary value to indicate the imitation process. This is also
the reason why we need a state alignment-based reward to
guide our control policy for this symbolic task.

C. Ablation Study

In order to highlight the necessity of each component in our
proposed approach, we implement a detailed ablation study.
We contrast three alternative methods, including (1) No MPC:
Adopt the output from the inverse dynamic model. (2) No
Prior: The MPC law iterates from scratch; (3) No Cost: The
cost constraint function is removed in the MPC.

According to the POMDP formulation, we evaluate the
performance of several ablations with the accumulated reward
in this comparison. Note that agents will obtain a positive
reward for episodic success and a negative warning reward
due to the violation of the cost constraints. We compare the
accumulated rewards of alternative ablations in Fig. 8(c)-(d)
and compare their success rate of them in Table. I. These
results show that our suggested MPC approaches get the best
success rate among them, while others are affected severely.

In the following, we provide a detailed analysis of their
performance. Without the predictive control, inverse dynamics
is used in No MPC to output the control command. As a result,
this controller usually traps in a local minimum to pursue
the final goal while ignoring the long-term impacts. Without
the action prior, No Prior generates random action sequences
within the huge space A. This setup prevents the algorithm
from finding a solution that satisfies the requirements in a finite
iteration period. Removing the cost function in No Cost, the
solution from the optimization usually violates the constraints,
which results in stopping an imitation episode in advance.

Although our approach is capable of handling the majority
of the challenging tasks, there are some situations when it fails.
Fig. 9 presents two typical failure examples. The failure case
in Fig. 9(a) is mainly caused by the state alignment settings.
The controller occasionally struggles in complex interactions

(a)

(b)

Figure 9. Typical failure cases in simulation. (a) The fabric is manipulated
to pass the rigid object. (b) The fabric reaches a state where it is difficult for
the controller to acquire a feasible action.

（a）

（c）

Fabric

RGB-D Camera

Box

Frame

Left
Arm

Right
Arm

（b）

Figure 10. Physical Scenarios to validate our approach. (a) Experimental
Setup. (b) The process of the demonstration video provision with human
hands. (c) Graphical illustration of the sequential demonstration.

with the rigid object since they are not considered in the
dynamics models of priors. As a result, agents can not reach
a state that satisfies the termination classifier and have to
iteratively generate motions until passing the final state in the
demonstration regardless of the penalization term in the reward
function. The failure in Fig. 9(b) is mainly caused by the
computation efficiency of the sampling-based MPC method.
To achieve real-time control, we define a finite searching
period for each time-step, and our approach occasionally fails
to find out an appropriate solution within this period. This
phenomenon is more obvious when the fabric is close to the
rigid object since the action space is more restricted.

D. Physical Experiments

This section gives the results of our proposed approach on
real-world experiments. Fig. 10(a) shows our robotic setup,
which contains two Franka Emika Panda arms equipped with
2-fingered grippers and a visual feedback device. The RGB-
D camera is fixed to provide a top-down perspective of the
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Figure 11. The scenarios of various contact-rich fabric manipulation tasks in real experiments. (a) Box-Small. (b) Hang. (c) Box-Big.

Table II
RESULTS IN PHYSICAL EXPERIMENTS

Task Fabric Rigidity Success Rate %
(cm) (cm) Translation Transformation

Box-Small 30×30 14×9×6 12/15 7/10
Hang 30×30 17×1×20 12/15 8/10

Box-Big 30×40 30×15×5 14/15 9/10

(b)

(a)

Figure 12. Typical failure cases in real-world experiments. (a) The fabric
is manipulated to pass the rigid object. (b) The fabric reaches a state where
it is difficult for the state representation model fR(S[t]|O[t]) to detect the
customized keypoints.

manipulation space. For a novel task, an operator provides
a demonstration video about the bimanual manipulation with
the hands, as shown in Fig. 10(b). Note that we only collect
the raw observations from the RGB-D camera and recognize
the pose of the rigid object with its attached marker. Then,
we process the collected observations with our representation
model fR(S

[t]|O[t]) to acquire the corresponding states, as
shown in Fig. 10(c).

To validate the effectiveness and robustness of our approach,
we perform three kinds of contact-rich fabric manipulation
tasks under different configurations. The details of various
tasks are introduced in Table. II and the individual successful
scenarios are shown in Fig. 11. Specifically, we consider three
kinds of tasks, including Box-Small, Hang, and Box-Big. The
major difference between Box-Small and Box-Big is the size
of the fabric, which is used to evaluate the robustness of

our algorithm in terms of the deformable object. Without any
additional explorations, our dual-arm robot is able to execute
the imitation for a novel task immediately with our efficient
skill-learning approach. For each episode, dual arms start from
a pre-grasp configuration and move the end-effectors when
the control command is received. An episode is considered
successful if the fabric establishes a corresponding symbolic
relationship with the rigid object stably after releasing the
grippers.

For each task, two levels of difficulty are analyzed: (1)
Translation: Only change the position of the rigid object
w.r.t. the situation in the demonstration. (2) Transformation:
Change the pose of the rigid object arbitrarily within the
workspace. The success rate for each individual contact-rich
manipulation task is summarized in Table. II. Each episode
lasts approximately 20s to 40s in real-time, depending on
the spatial distance between the initial configuration and the
ultimate goal. These quantitative results illustrate the superior
performance of our proposed approach in terms of efficiency
and robustness.

Fig. 12(a) shows a failure case in physical experiments,
which is similar to the scenario of Fig. 9(a) in simulation.
Since the exploration data is only collected in simulation, the
transfer performance in reality is unavoidably affected due
to their gap. Compared with the simulation results in Sec.
IV-B, we acquire two distinct observations when analyzing
the performance of the physical implementations. The first
one is that the success rate is decreased when the rotation
transform is included. This is mainly because the kinematic
feasibility of the robotic arms limits the manipulation space
and brings additional difficulties for robots to align with the
expert demonstrations. Considering the manipulability of robot
arms in simulation instead of simplifying them as virtual
anchors is beneficial to alleviate this problem. The second one
is that the occlusion phenomenon is unavoidable in robotic
manipulations under grasping configuration, resulting in a
lower keypoint detection accuracy. In the future, we consider
leveraging temporal information to track the manipulated
object during the entire manipulation.
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VI. CONCLUSION

In this paper, we propose an efficient robot skill learn-
ing approach through imitation from a single demonstration
video. We learn general prior knowledge in one scene and
a state alignment-based reward function for a new scene
based on the provided demonstration video. Robots are able
to deploy the new scenario immediately by incorporating the
above issues into our sampling-based MPC method. Since
we do not assume the exact dynamic consistency between
training and evaluation, the data collection procedure can be
implemented in simulation to avoid time-consuming and high-
cost procedures in real scenarios. Furthermore, the need for
random physical explorations of robots is obviated, thereby
mitigating potential hazards in unstructured environments. The
performance of the proposed approach is evaluated in the
context of contact-rich fabric manipulation, in which two
robotic arms need to cooperate in a constraint-aware manner.
The results in both the simulation and real-world experiments
show that robots are able to imitate the demonstration videos
efficiently and safely.

In future work, we seek to leverage the temporal experience
in the deployment of a task to improve the policy incremen-
tally. In addition, integrating force sensing is beneficial to
achieve a flexible and compliant control strategy for challeng-
ing robotic tasks.
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