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Abstract—The increasing deployment of robots has signifi-
cantly enhanced the automation levels across a wide and diverse
range of industries. This paper investigates the automation
challenges of laser-based dermatology procedures in the beauty
industry; This group of related manipulation tasks involves
delivering energy from a cosmetic laser onto the skin with
repetitive patterns. To automate this procedure, we propose
to use a robotic manipulator and endow it with the dexterity
of a skilled dermatology practitioner through a learning-from-
demonstration framework. To ensure that the cosmetic laser can
properly deliver the energy onto the skin surface of an individual,
we develop a novel structured prediction-based imitation learning
algorithm with the merit of handling geometric constraints.
Notably, our proposed algorithm effectively tackles the imitation
challenges associated with quasi-periodic motions, a common
feature of many laser-based cosmetic tasks. The conducted real-
world experiments illustrate the performance of our robotic
beautician in mimicking realistic dermatological procedures;
Our new method is shown to not only replicate the rhythmic
movements from the provided demonstrations but also to adapt
the acquired skills to previously unseen scenarios and subjects.

Index Terms—Robotic manipulation, learning by demonstra-
tion, geometric modeling, trajectory planning, cosmetic derma-
tology robots.

I. INTRODUCTION

Due to its rapidly advancing nature, robotics has drastically
changed many aspects of our lives. In just a couple of decades,
we have witnessed how many labor-intensive industrial pro-
cesses have been upgraded by the use of robots. Following
this spirit, in this work, we investigate the development of
a new generation of robotic systems that automate laser-
based cosmetic procedures in the beauty industry [1]. The
manipulation tasks under consideration involve the controlled
delivery of energy from a cosmetic laser onto the subject’s skin
with (quasi-)periodic patterns, a procedure that serves multiple
purposes, e.g., to improve the aesthetic condition of the skin,
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Fig. 1. Illustration of a skin photorejuvenation procedure where a dermatology
practitioner rhythmically manipulates a cosmetic laser handpiece that fires
multiple laser shots onto the subject’s skin surface.

decrease the visibility of scars and freckles, remove hair from
legs and armpits, to name a few cases [2]. Fig. 1 depicts the so-
called skin photorejuvenation task, where a human practitioner
“rhythmically” moves the laser handpiece over the area of
interest to uniformly deliver thermal energy via pulsating
laser shots [3]. This photorejuvenation task (as well as other
related laser-based procedures in cosmetic dermatology) can
potentially be automated by robots capable of synthesizing
skilled (quasi-)periodic motions. Our goal in this paper is
precisely to develop this type of system.

Conventional methods for programming a desired robot
behavior may not entirely capture the required skills to per-
form a dermatology procedure, as these approaches typically
hardcode specific motions for the robot, which are difficult
to adapt to new situations and subjects. To this end, we
employ the framework of learning by demonstration, also
known as robot imitation learning, which offers a convenient
paradigm to seamlessly transfer the motion skills from non-
expert robot users, such as dermatology practitioners, to a
robot by providing the user’s motion data [4]. The entire
process of learning by demonstration typically comprises three
phases [5]: a demonstration phase, where motion data is
collected to teach robots the desired behavior, a reproduction
phase, where robots reproduce the learned skills, and an adap-
tation phase, where robots adapt the learned skills to operate
in a different environment from the initial demonstration.

From an algorithmic perspective, studying representations
for motor skills holds significant importance in facilitating
robot imitation learning. The well-established movement prim-
itives emerges as a powerful tool [6]. Once the demonstration
is complete, movement primitives are commonly utilized for
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motion analysis to extract motion patterns from experts’
demonstrations. Subsequently, during the reproduction and
adaptation phases, the learned movement primitives will be
employed to accomplish robot tasks.

Our Contribution. Several technical challenges arise when
transferring laser manipulation skills from a human expert to
a robot. The main complications are twofold: (i) extracting
the laser’s distinct motion patterns that entail the laser spots
rhythmically evolving on a subject’s skin surface, and (ii)
adapting the extracted motor skills for subsequent treatment
of a new subject. Accordingly, the original contributions of
this paper are outlined as follows:

• Development of a novel imitation learning algorithm that
can generate rhythmic motion with geometric constraints
for laser-based cosmetic procedures.

• Derivation of a motor skill adaptation strategy for treating
a new subject’s face that is absent in the demonstration.

Specifically, compared with state-of-the-art methods, our pro-
posed imitation learning algorithm is characterized by:

• Allowing for imitation of trajectories that involve geo-
metric constraints.

• Supporting the acquisition of periodic or quasi-periodic
motion patterns.

• Eliminating the need for manual configuration or fine-
tuning of basis functions.

Our proposed new algorithm can be readily utilized for a
variety of imitation learning problems that occur in either the
Euclidean space or in the presence of other types of manifold
constraints. This versatility expands its potential applications
beyond the specific context of cosmetic dermatology.

Organization. The rest of the paper is organized as follows:
Sec. II presents the related work; Sec. III describes the
developed learning from demonstration algorithm; Sec. IV
derives the skill adaptation approach; Sec. V numerically and
experimentally validates the proposed methodology; Sec VI
concludes the paper. Notation is provided in Appendix A.

II. RELATED WORK

Geometric trajectory generation. During photorejuvena-
tion, the robot arm needs to generate laser traces on a subject’s
face. It is thus required to ensure that the traces adhere to
the geometric constraints imposed by the facial surface. To
achieve geometric trajectory generation, multiple perspectives
can be referred to, such as mapping 2D curves onto the
3D surface [7]–[9] and sampling [10] or neural networks-
based motion planning [11]. Compared to the aforemen-
tioned approaches, our approach tackles the problem from
an imitation perspective. It overcomes the distortion issue
commonly associated with the mapping strategy. Moreover, in
comparison to sampling-based methods, our approach exhibits
lower computational complexity. Particularly, the imitation
framework offers a user-friendly interface for non-expert robot
users, making it well-suited for dermatologists to transfer their
motion skills to a robot arm.

Imitation learning on Riemannian manifolds. Due to
the prevalence of Riemannian structures in robotics, such
as orientation, manipulability, and joint stiffness, extensions

of imitation learning to Riemannian manifolds have been
gaining increasing popularity, see e.g., [12]–[15]. In contrast
to previous strategies, we propose to address geometric con-
straints through the use of structured prediction, which has
proven to be an effective tool for enabling robot movement
imitation [16]. Furthermore, in this paper, we emphasize the
significant role of kernels, which form the foundation of
our employed non-parametric imitation strategy. In particular,
we highlight the flexibility of our framework in terms of
capturing motion patterns by leveraging various types of kernel
functions.

Geodesic distance calculation. Typically, the calculation
of geodesic distances constitutes a crucial component in
imitation learning on manifolds. The geodesic distance is
commonly available as a by-product of dimensionality re-
duction methods such as Isometric Mapping (ISOMAP) [17]
or Multi-Dimensional Scaling (MDS) [18]. Also, physics-
inspired methods, such as the heat diffusion equation [19]
and the Eikonal equation [20], offer an alternative approach
to calculating geodesic distances. In comparison to the afore-
mentioned approaches, we propose to approximate a surface
using osculating spherelets, which have the merit of analytic
expressions for geodesic distances. Consequently, it is efficient
to calculate the geodesic distance between two manifold
points, without iteratively searching for the shortest path or
solving differential equations.

Rhythmic movement modeling. Another related field is
the generation of rhythmic movement. Noticeably, parametric
imitation is usually achieved by cyclic basis functions [21]
while non-parametric methods typically utilize periodic ker-
nels [22], like our case. Importantly, we explicitly provide
definitions for (quasi-)periodic trajectories under geometric
constraints. Besides, signal processing techniques, such as
the Fourier transform, can also be applied to capture quasi-
periodic motion patterns [23]. However, these approaches
disregard the geometry-structured rhythm that our method
emphasizes.

III. IMITATION OF GEOMETRIC TRAJECTORIES
WITH RHYTHM

In this section, we provide the technical details of the
developed imitation algorithm. First, we present the strategy
of motion imitation under geometric constraints by structured
prediction (Sec. III-A). Then, we illustrate the determination
of the kernel functions for motion pattern capture (Sec. III-B),
followed by efficient calculation of loss functions (Sec. III-C).

A. Motion Imitation by Structured Prediction

To begin with, the dataset of the laser spots trajectory
demonstrated by a dermatologist is denoted as T : {(tn,pn =
[xn, yn, zn]

⊺)}Nn=1, where t ∈ T is the time stamp with T
being the input space and p is the corresponding trajectory
position. During the treatment, the trajectory of the laser
generator cannot freely evolve. Rather, it is required to be
constrained on the inflated surface at a certain height above
the subject’s face.
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Fig. 2. Illustration of making structured prediction for periodic motions using
the surrogate approach. Black curves denote the training procedure while red
curves and cyan curves denote the generalization procedure using the periodic
and squared exponential kernels, respectively.

Remark 1. All the trajectory points from the demonstrated
dataset T lie on the surface manifold S, i.e., pn ∈ S with
∀(tn,pn) ∈ T.

The inherent constraint underlying the demonstrated trajec-
tories poses a unique challenge in applying existing imitation
learning algorithms due to the Riemannian metric associated
with the surface manifold. It is thus imperative to devise
geometry-aware movement primitives, which is exactly the
objective of this paper. As a powerful tool to deal with super-
vised learning, structured prediction is especially competent
at handling cases where outputs possess geometrically rich
structures [24]. In this paper, we propose to tackle the issue
of learning (quasi-)periodic trajectories for skin photorejuve-
nation by resorting to the structured prediction framework.

A major strategy employed in structured prediction is the
surrogate approach [25], whose core notion can be outlined by:
1) Embedding the outputs into a linear surrogate space, then
2) Solving the learning problem in the surrogate space, and
finally 3) Mapping the solution back to the structured space
with a decoding rule. More formally, the surrogate approach
to structured prediction is sketched as follows:

1) Encoding. Design an encoding rule c : S → H.
2) Surrogate Learning. Solve the surrogate learning problem

g : T → H which minimizes L(c(pn),g(tn)) with the
surrogate loss L : H×H → R, given the surrogate dataset
Ds : {tn, c(pn)}Nn=1.

3) Decoding. Obtain the structured output s = c−1 ◦ g :
T → S with a suitable decoding c−1 : H → S .

There emerge recent insights on the loss function in the
structured space that it implicitly carries a natural correspond-
ing geometric structure. The exploitation of such a structure
allows us to relax the aforementioned surrogate framework
further, leading to an implicit formulation.

Definition 1 (Structure Encoding Loss Function [25]). A loss
function ∆ : S × S → R is called a Structure Encoding Loss
Function if there exist a separable Hilbert space H associated

with an inner product ⟨·, ·⟩H, a continuous feature map Ψ :
S → H and a continuous linear operator V : H → H such
that for all p,p′ ∈ S,

∆(p,p′) = ⟨Ψ(p),VΨ(p′)⟩H. (1)

By leveraging the ridge regression estimator that minimizes
the regularized empirical risk [26], we can formulate the
learning problem in the surrogate space as a regularization
problem

g = argmin
g∈G

1

N

N∑
n=1

∥Ψ(pn)− g(tn)∥2H + λ∥g∥2G , (2)

where G is a normed space of functions T → H and λ > 0
is the Tikhonov hyperparameter. Considering a reproducing
kernel Hilbert space (RKHS) of vector-valued functions and
the associated matrix-valued kernel K : T × T → RD×D

where D is the dimension of H, the solution to (2) is obtained
by employing the representer theorem within the vector-valued
setting [26]

g(t) =

N∑
n=1

K(tn, t)βn. (3)

By choosing the matrix-valued kernel to be K(t, t′) =
k(t, t′)IH with k : T × T → R being a reproducing kernel,
the concatenation of the coefficient βn gives

β̃ =
[
β⊺
1 , . . . ,β

⊺
N

]⊺
=
(
(K+ λNIN )⊗ IH

)−1
Ψ̃ (4)

where the concatenation of the output vectors is given as
Ψ̃ =

[
Ψ⊺

1 , . . . ,Ψ
⊺
N

]⊺
and K ∈ RN×N is defined by

Ki,j = k(ti, tj). For any t ∈ T , we then have

g(t) = (k⊺ ⊗ IH)
(
(K+ λNIN )⊗ IH

)−1
Ψ̃ (5a)

=

N∑
n=1

αn(t)Ψ(pn), (5b)

where α(t) = [α1(t), . . . ,αN (t)]⊺ = (K+λNIN )−1k ∈ RN

and k ∈ RN is constructed by ki = k(t, ti).
Leveraging the structure of the SELF loss function in the

expected risk, the following decoding rule can be introduced:

c−1(ζ) = argmin
p∈S

⟨Ψ(p),Vζ⟩H , (6)

where ζ ∈ H.
Finally, by combining (5b) with (6), the estimated output

can be exposed as [25]

s(t) = argmin
p∈S

N∑
n=1

αn(t)∆(p,pn). (7)

The usage of estimator (7) consists of two steps: 1) Training:
the score function α is computed given a test input t, and 2)
Prediction: a linear αn-weighted cost is minimized. Notably,
there is no need for explicit knowledge of the space H, the
feature map Ψ, or the operator V thanks to the structure of the
loss ∆. Hence an implicit embedding framework is attained,
as shown in Fig. 2.
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B. Kernel Design for Motion Pattern Capture

As in other laser-related applications, the trajectory of the
cosmetic laser also exhibits the property of (quasi-)periodicity.
To capture such a rhythmic motion pattern, it is not a trivial is-
sue to consider the design of the reproducing kernels since the
form of the kernel significantly determines the generalization
capability of a learning model.

The impact of kernel functions on pattern analysis within
nonparametric learning methods has been a crucial concern.
The design of the kernels for pattern analysis has been well
studied from the Bayesian perspective such as Gaussian pro-
cesses (GP) where the kernels appear as covariance functions.
Also, kernel properties are exploited in the frequentist learning
field for supervised tasks. Despite Bayesian learning with GP
and frequentist methods with RKHS representing two distinct
approaches to non-parametric regression, the properties of the
kernels can indeed be harnessed due to the connections be-
tween Bayesian and frequentist regularization approaches [27].

Remark 2. Prediction with RKHS as in (3) is equivalent to
the mean prediction of a multi-task GP with the zero mean
prior and noise variance being λNIN using the same kernel.

Given the equivalence between GP and RKHS, the consti-
tution of kernels considered in the context of GP can also be
directly leveraged into the regularization framework of RKHS.
In other words, it is reasonable for one to design kernels for
RKHS by referring to the properties of the kernels in GP as
discussed by [28, Ch. 2].

As a universal kernel, the squared exponential kernel is
commonly employed as a default kernel in kernel-based ma-
chine learning, which has the form:

kSE(t, t
′) = σ2

s exp

(
− (t− t′)2

2l2s

)
, (8)

where length-scale ls and variance σ2
s are the hyper-

parameters. Despite its prevalence, the squared exponential
kernel could fail to capture certain patterns. We shall see
shortly that it is not suitable for expressing the robot’s periodic
movement, whose definition is given as follows.

Definition 2 (Periodicity of a geometric trajectory). A periodic
geometric trajectory is defined by

P(t) = P(t+ T ), (9)

where T > 0 is called the period of the geometric trajectory.

In the following, we will show the necessity of choosing a
proper kernel for capturing our motion pattern.

Proposition 1 (Model misspecification). Given a query point
t → +∞, the output of the estimator (7) with the squared
exponential kernel (8) remains constant.

Proof. For any two training points tn1 and tn2, we have

lim
t→+∞

kn1(t)

kn2(t)
= exp

(
(t− tn2)

2 − (t− tn1)
2

2l2s

)
= 1, (10)

which implies that k becomes a vector with all equal elements
with the query point t being far from the training set. As a
result, α becomes independent of the query input, leading to

the loss function of the n-th element scored by a constant. In
particular, the constant weight is given by αn =

∑N
i=1[(K+

λNIN )−1]n,i. ■

Proposition 1 claims that the estimator (7) with the squared
exponential kernel cannot extrapolate well on the periodic
dataset since the output is simply a constant as the query
point moves far away from the training dataset. A similar
problem could also happen in the case of interpolation. When
the interval between two consecutive training points is larger
than one period of the periodic trajectory, the prediction along
this interval is also non-periodic, which is caused by the non-
periodicity of α.

In view of the model misspecification issue, we propose
to employ the periodic kernel to capture the periodic motion
pattern. The form of the periodic kernel is given by [29]

kPER(t, t
′) = σ2

p exp

(
−
2 sin2

(
π(t− t′)/p

)
l2p

)
, (11)

where period p, length-scale lp, and variance σ2
p are the kernel

hyper-parameters.

Proposition 2 (Blessing of Abstraction). Given a query point
t, the output of the estimator (7) with the periodic kernel (11)
remains periodic.

Proof. Given a training point tn, we have

kn(t) = σ2
p exp

(
−
2 sin2

(
π(t− tn)/p

)
l2p

)

= σ2
p exp

(
−
2 sin2

(
π(t+ p− tn)/p

)
l2p

)
= kPER(t+ p, tn) = kn(t+ p),

(12)

which implies that k is periodic with the period being p.
Therefore, the output of (7) becomes also periodic due to the
periodicity of α. ■

Proposition 2 shows that based on a properly designed
kernel function, our structured predictor can perform well
regarding out-of-distribution generalization, as depicted in
Fig. 2, since the underlying motion pattern is accounted for
by the structure of the kernel function, which gives rise to the
blessing of abstraction.

It is worth noting that although the motion pattern of
the structured output space (9) suggests the usage of the
periodic kernel, it is the surrogate space, where the kernel
ridge regression is performed as in (3), that directly prescribes
the kernel design. Therefore, it is of interest to investigate the
behavior of the vectors in the surrogate space. In fact, given (9)
holds, we can conclude that the surrogate space indeed exhibits
periodic, namely Ψ(p(t)) = Ψ(p(t+T )), which can be shown
by the bijection property of the feature map.

In practice, the periodic trajectory may not exactly recur
itself. Most likely, the trajectory could be quasi-periodic, i.e.
the recurring part may evolve over time [30]. It is therefore
necessary to modify the periodic kernel such that the pattern of
quasi-periodicity can be captured by the modified kernel. In
this regard, we propose to employ the quasi-periodic kernel
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Fig. 3. Illustration of (a) periodic, (b) arithmetic, and (c) cumulative patterns
where Euclidean trajectories (upper row) are plotted in blue and trajectories
on a manifold (bottom row) are plotted in red.

obtained by the product of a periodic kernel and a squared
exponential kernel [31]:

kQP(t, t
′) = kSE(t, t

′)× kPER(t, t
′). (13)

As a sanity check, it is also worth investigating the cor-
responding behavior of the structured output space given the
quasi-periodicity of the surrogate space to justify the usage
of the quasi-periodic kernel in the surrogate space learning.
To this end, we first define two representative quasi-periodic
patterns for the case of vector-valued functions, provided q(t)
is defined on [0, T ].

Definition 3 (Quasi-Periodicity for vector-valued function).
Arithmetic :

q(τ + aT ) = q(τ + (a− 1)T ) +C(τ), (14a)

Cumulative :

q(τ + aT ) = q(τ + (a− 1)T ) + aC(τ), (14b)

where τ ∈ [0, T ], a ∈ N+ denotes the period index, and
C(τ) is a continuous function deciding the temporal change
following the first period.

Akin to Definition 3, we extend the corresponding concepts
of quasi-periodicity to their geometric counterparts.

Definition 4 (Quasi-Periodicity for geometric trajectory).
Arithmetic :

P(τ + aT ) = ExpP(τ+(a−1)T )ΓP(τ)→P(τ+(a−1)T )C(τ),
(15a)

Cumulative :

P(τ + aT ) = ExpP(τ+(a−1)T )ΓP(τ)→P(τ+(a−1)T )aC(τ),
(15b)

where P(t) is given on [0, T ], and C(τ) is defined on the
tangent space at P(τ).

Fig. 3 illustrates the periodic and quasi-periodic behaviors
on a plane and a sphere manifold.

Theorem 1. If the trajectories in surrogate space satisfy quasi-
periodic behavior as in (14a) or (14b), then the geometric
trajectories conform to (15a) and (15b), respectively.

Fig. 4. Illustration of geodesic distance calculation by spherelets. The
geodesic distance between two points as denoted by a square and a triangle
on the surface is obtained by summing the lengths of the geodesic curves
on the composing spheres. The segmentation points are determined using the
intersection points between the mapped straight curve and the specified grid
lines on the projection plane.

Proof. See Appendix B. ■

Remarkably, Theorem 1 states that the quasi-periodic pat-
tern in the surrogate space denotes a sufficient condition for
the geometric output space to be quasi-periodic as well.

C. Loss Function Calculation

When applying (7) for learning geometric trajectories, we
need to solve a geometric optimization problem that involves
the computation of geodesic distances. The geodesic path on
3D surfaces is usually difficult to find and the procedure may
require many iterations [32]. Provided that we need to compute
the geodesic distance of a manifold point to all demonstrated
trajectory points, it is thus favorable to efficiently compute the
geodesic distance of two points on the facial surface.

We propose to exploit the strategy of spherelets, which
refers to manifold approximation using spheres [33]. Geodesic
distance calculation based on the spherelet technique is effi-
cient as it admits a closed-form solution. The main steps of
using spherelets for geodesic distance calculation are sketched
as follows: 1) Partitioning the facial surface into composing
regions, 2) Designating an osculating sphere for each region
to approximate the manifold, and 3) Calculating the geodesic
distance by summing the length of each composing geodesic
path segment.

We consider partitioning the facial surface by a grid. As a
result, the surface manifold is composed by S =

⋃d
s=1 S2s,

where d denotes the total number of regions. As mentioned
earlier, we propose to use an osculating sphere to approximate
each surface region. Formally, an osculating sphere is defined
by S2s := {ζ : ∥ζ−Os∥ = rs}. Given the 3D points collection
of the facial surface F : {ξm = (xm, ym, zm)}Mm=1, the center
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Algorithm 1: Imitation of Geometric Trajectory with
Rhythm by Structured Prediction

1 Scan the subject’s face for point cloud dataset F;
2 Determine the projection plane perpendicular to the

eigenvector with the minimum eigenvalue of (19);
3 Specify grid {{lpvi}nvi=1, {l

p
hj}nhj=1} for facial partition;

4 Compute the centers and radius as per (17);
5 Collect the demonstrated trajectory for dataset T;
6 Define the kernel function k(·, ·) and hyperparameters;
7 Choose the regularization term λ and the step size η;
8 for t = tinit, . . . , tend do
9 Input: Query point t;

10 Calculate the scores α(t);
11 repeat
12 for n = 1, . . . , N do
13 Determine the intersection points with the

grid lines on the projection plane;
14 Map the intersection points to the surface

manifold for segmentation points;
15 Calculate the geodesic distance to each

training point D(P(t),Pn) as per (20);

16 Compute the Riemannian gradient as per (23);
17 Update the prediction as per (21);
18 until convergence;
19 Output: Prediction P(t);

Os and the radius rs are obtained by minimizing the following
algebraic loss function:

Cs(Os, rs) =
∑
ξi∈S2s

(
(ξi −Os)

⊺(ξi −Os)− r2s
)2

. (16)

Lemma 1 (Osculating Sphere Estimation [33]). The mini-
mizer to (16) is given by

Os =
1

2
Λ−1

s θs and rs =
1

Ms

∑
ξi∈S2s

∥ξi −Os∥, (17)

where Ms denotes the number of data points in the corre-
sponding region and

Λs =
∑
ξi∈S2s

(ξi − ξs)(ξi − ξs)
⊺, (18a)

θs =
∑
ξi∈S2s

(ξ⊺i ξi −
1

Ms

∑
ξi∈S2s

ξ⊺i ξi)(ξi − ξs). (18b)

To determine the segmentation points on the geodesic path
connecting two manifold points of interest ξa and ξb, we
identify a plane that is determined by the maximum variance
of the facial surface, i.e. the projected area of the face surface
onto the plane is maximized. To this end, we compute the data
covariance matrix as

Σf =
1

M

M∑
m=1

(ξm−ξ)(ξm−ξ)⊺, with ξ =
1

M

M∑
m=1

ξm. (19)

The projection plane is then identified by aligning its normal
with the least principal component of the data points, which is

the eigenvector with the smallest eigenvalue of Σf . By project-
ing ξa and ξb to the projection plane, we obtain the projected
points ξpa and ξpb , respectively. On the projection plane, we
compute the intersection points by crossing the straight line
ξpaξ

p
b with the grid lines {{lpvi}nvi=1, {l

p
hj}nhj=1} where lpvi denote

the vertical lines and lphj denote the horizontal lines. Then, the
segmentation points are obtained by projecting the intersection
points on the projection plane to the approximated manifold,
i.e., ξsvi,hi = Πs

p(l
p
vi, l

p
hi∩ ξpaξ

p
b ) where Πs

p(·) perpendicularly
maps a point on the projection plane to the point lying on the
corresponding approximated sphere manifold.

Finally, by sorting the segmentation points to be {ξsi }Li=1

such that they are ordered in accordance with the direction of
ξpa to ξpb , the geodesic distance can be approximated by

D(ξa, ξb) ≈
L∑

l=0

rl arccos

(
ξsl −Ol

rl
·
ξsl+1 −Ol

rl

)
, (20)

where rl and Ol represent the radius and center of the
corresponding sphere, respectively. Besides, we have ξ0 = ξa
and ξL+1 = ξb. Fig. 4 provides a pictorial illustration of
geodesic distance approximation using spherelets.

Given the solution to the geodesic distance calculation by
(20), the geometric optimization problem in (7) can be readily
addressed by Riemannian gradient descent, which represents
the Riemannian counterpart of the usual gradient descent
method [25]. The update rule iteratively proceeds as

pi+1 = Exppi
(ηi∇MF(pi)) , (21)

where ηi ∈ R is a step size, and we denote

F(pi) =

N∑
n=1

αn(t)∆(pi,pn), (22a)

∆(pi,pn) = D2(pi,pn). (22b)

Specifically, ∇M denotes the Riemannian gradient operator
and the gradient defined with respect to the Riemannian metric
is given by the projection of the usual gradient to the tangent
space [34], which reads

∇MF(pi) = Projpi
∇F(pi). (23)

Wherein we have

Orthogonal projector: Projpi
≜ r2i I− pip

⊺
i , (24a)

Euclidean gradient: ∇F(pi) ≜ 2

N∑
n=1

αnDi,n
∂Di,n

∂pi
.

(24b)

We denote Di,n := D(pi,pn) for simplicity.
The algorithm for imitating rhythmic trajectory on a facial

surface using structured prediction is summarized in Alg. 1.



7

Fig. 5. Illustration of probabilistic nonrigid registration. (a) The original shape
of the trajectory on the demonstration face. (b) The adaptation face where con-
trol points are depicted in blue with the radius indicating the covariance matrix
contour. (c) Transformed trajectory shape without probabilistic registration,
which exceeds the boundary of the forehead. (d) Transformed trajectory shape
with probabilistic registration which ensures that the trajectory lies within the
boundary of the forehead.

IV. ADAPTATION OF LEARNED SKILLS
TO TREAT NEW FACES

As a central topic in robot learning from demonstration, the
adaptation of motor skills is crucial for robots to accomplish
the task in an environment that is different from the one in
the demonstration. In our application, the objective is to equip
the robot with the capacity to execute treatment on subjects
who were not present during the demonstration. To achieve
adaptation of treatment skills, our strategy is to modulate
trajectory in accordance with changes in the shape of human
faces. Wherein, human facial shapes are captured by key
facial features such as control points. Consequently, based on
changes in the key facial features, we acquire rules for the
laser generator’s trajectory adaptation.

We propose to tackle the problem of discovering the rules
for trajectory adaptation by feature-based registration, whose
goal is to align a source surface (i.e., the face in the demon-
stration) with a target surface (i.e., the face during the adap-
tation) given landmark points. Specifically, we consider the
nonrigid transformation, which permits soft deformations of
the point sets. A common technique for non-rigid registration
is to parametrize the transformation by leveraging thin-plate
spline [35]. While nonrigid registration has gained attention
in robot imitation learning for modulating learned trajectories
towards new environments, the applications have been limited
to deterministic scenarios [36].

In the following, we present a method for achieving
probabilistic trajectory adaptation with nonrigid registration.
By incorporating additional probabilistic information in the
form of associated covariance matrices, our method offers
greater flexibility in devising the transformation. Specifically,
trajectory points with higher variances will be allowed to
deviate more while those with lower variances will deflect less
after the transformation. The proposed probabilistic trajectory
adaptation technique is particularly relevant to our application
of skincare, where covariance matrices could be utilized to
encode local skin conditions.

Formally, assume that there are K landmark points for
the source and target facial surface which are represented
by {ξ̂li}Ki=1 and {ξ̂′i}Ki=1, respectively, with the points index
stored as {l1, . . . , lK}. In addition, the associated covariance

matrices are given by {Σ̂li}Ki=1. Our goal is to find a trans-
formation rule f : RD → RD such that each original source
point can be mapped to its corresponding target point. The
problem of determining the transformation function f can be
cast as the following optimization problem:

E(f)=

K∑
i=1

(
ξ̂′i−f(ξ̂li)

)⊺
Σ̂−1

li

(
ξ̂′i−f(ξ̂li)

)
+λ∥f∥2tps (25)

where E(·) is the so-called bending energy. As a slight abuse
of notation, λ > 0 is a smoothing parameter that balances
the trade-off between smoothness and goodness-of-fit. Besides,
∥f∥2tps denotes the thin plate spline regularization term, which
imposes a soft constraint on smoothness in order to control the
behavior of the mapping. It is defined by the space integral of
the square of the second-order derivatives [35]:

∥f∥2tps =
∫
R3

∥∥∥∥∂2f

∂2ξ̂

∥∥∥∥2
Frob

dξ̂. (26)

Remarkably, there exists a unique minimizer, and the ana-
lytical solution to f is composed of an affine or rigid part and
a nonlinear or nonrigid part:

f(ξ̂li) = Bξ̂li︸︷︷︸
Affine part

+ ωρ(ξ̂li)︸ ︷︷ ︸
Nonlinear term

, (27)

where B ∈ R(D+1)×(D+1) accounts for the affine transfor-
mation and ω ∈ R(D+1)×K contains the warping coefficients
enabling non-affine deformation. It should be noted that we
augment each point with an intercept term for homogeneous
coordinates, i.e., ξ̂li ← [ξ̂⊺li 1]

⊺ in order to include data offset
conveniently. The vector ρ(ξ̂li) ∈ RK is composed of the
thin-plate spline basis functions and each entry of the vector
is defined by

ρj(ξ̂li) = −
∥∥∥ξ̂lj − ξ̂li

∥∥∥2 . (28)

To solve for B and ω, we substitute (27) into (25). Then,
the bending energy becomes

E = sum
(
(ξ̃′ −Gω⊺ − ξ̃lB

⊺)⊙ Q̃⊙ (ξ̃′ −Gω⊺ − ξ̃lB
⊺)
)

+ λTr(ωGω⊺)

= ∥Q̃ 1
2 ⊙ (ξ̃′−Gω⊺−ξ̃lB⊺)∥2Frob+λTr(ωGω⊺) (29)

where G ∈ RK×K is constructed by Gi,j = ρj(ξ̂li) and we
have the concatenated terms:

ξ̃l =
[
ξ̂l1 , . . . , ξ̂lK

]⊺
, ξ̃′ =

[
ξ̂′1, . . . , ξ̂

′
K

]⊺
,

and Q̃ = blockdiag(Σ̂−1
l1

, . . . , Σ̂−1
lK

).
(30)

In view of the optimization objective, it is not straightfor-
ward to calculate B and ω. Therefore, the QR decomposition
is employed to separate the affine and non-affine warping
spaces [35]. Specifically, we have

Q̃
1
2 ⊙ ξ̃l = [Q1 Q2]

[
R
0

]
. (31)

By observing that (Q̃
1
2 ⊙ ξ̃l)

⊺ω⊺ = 0, we set

ω⊺ = Q2γ. (32)
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Algorithm 2: Skill Adaptation toward Treating Novel
Faces by Probabilistic Nonrigid Registration

1 Choose source control points {ξ̂li}Ki=1;
2 Scan the new subject’s face for the point cloud dataset;
3 Determine target control points {ξ̂′i}Ki=1;
4 Specify the associated covariance matrices {Σ̂li}Ki=1;
5 Concatenate terms for ξ̃l, ξ̃′, and Q̃ as per (30);
6 Perform QR decomposition as per (31);
7 Solve for the affine transformation B and nonlinear

warping coefficients ω as per (34) and (32);
8 Input: Demonstrated trajectory point P(t);
9 Output: Adaptation point f(P(t)) as per (27);

TABLE I
IMITATION ERRORS OF REPRODUCTION AND GENERALIZATION

C-shape Infinity Spiral
(1e−3) Tra. Gen. Tra. Gen. Tra. Gen.

SE 25.0 76.3 14.1 1258.5 12.3 918.5

PER 27.3 217.7 3.4 3.6 63.5 189.1

QP 25.4 162.4 5.7 293.9 2.9 37.1

Subsequently, the bending energy can be expressed as

E =∥Q⊺
2

(
Q̃

1
2 ⊙ (ξ̃′ −GQ2γ)

)
∥2Frob

+ ∥Q⊺
1

(
Q̃

1
2 ⊙ (ξ̃′ −GQ2γ)−RB⊺

)
∥2Frob

+ λTr(γ⊺Q⊺
2GQ2γ).

(33)

Finally, the solution for B is given by

B⊺ = R−1Q⊺
1

(
Q̃

1
2 ⊙ (ξ̃′ −GQ2γ)

)
, (34)

where we have

γ =
(
Q⊺

2Q̃
1
2 ⊙GQ2+λI

)−1
Q⊺

2Q̃
1
2 ⊙ ξ̃′. (35)

Moreover, the expression for ω can be readily obtained by
combining (32) and (35).

The effect of probabilistic non-rigid registration is shown
in Fig. 5, where, as an illustration, we use two caricature
faces [37]. The additional regulation can ensure that the
adapted trajectory upon non-rigid registration can properly
evolve on the new subject’s face.

The steps for the adaptation of laser shot traces towards
treating a new face are summarized in Alg. 2.

V. RESULTS

In this section, we present the results of numerical and
experimental studies. Firstly, we showcase the effectiveness of
kernel functions in capturing motion patterns (Section V-A),
the spherelet technique in calculating the geodesic distances
(Section V-B), and non-rigid registration in adapting treatment
trajectories (Section V-C). Then, We provide a comparison
with state-of-the-art methods for learning periodic geometry-
structured trajectories in Section V-D. Finally, in Section
V-E, we conduct real-world experiments on robotic cosmetic
dermatology using photorejuvenation.

TABLE II
GEODESIC DISTANCE CALCULATION RESULTS.

Forehead Cheek Chin
Method mm s mm s mm s

IsoMap 3.386 0.820 2.108 0.389 2.562 0.373

MDS 3.3746 0.101 2.0489 0.077 2.4433 0.071

Heat 3.448 0.699 2.1831 0.626 2.564 0.599

Eikonal 3.3748 0.603 2.0583 0.501 2.4433 0.459

OneSph. (ours) 3.2992 0.018 1.9616 0.017 2.4876 0.018

TwoSph. (ours) 3.3128 0.026 2.0070 0.023 2.5196 0.023

ThreeSph. (ours) 3.3308 0.025 2.0223 0.023 2.5370 0.027

A. Effects of Kernel Functions

To evaluate the learning effects when using different kernel
functions for the estimator (7), we construct the α scores
based on several representative kernel functions to imitate
different types of demonstration trajectories, including the
Squared Exponential kernel (SE) kSE as in (8), the Periodic
kernel (PER) kPER as in (11), and the Quasi-Periodic kernel
(QP) kQP as in (13). Three typical patterns of demonstration
trajectory, namely stroke-based trajectory, periodic trajectory,
and quasi-periodic trajectory are chosen. These trajectories are
designed to evolve on a unit sphere whose center coincides
with the origin of the coordinate. In each learning scenario,
we split the whole trajectory into two parts to perform both
movement primitive training and skill generalization testing.

We specify a C-shaped, an infinity sign ∞-shaped, and a
spiral-shaped trajectory for stroke-based, periodic, and quasi-
periodic trajectory imitation, respectively. In the case of learn-
ing with the SE kernel, we set σs = 5 and ls = 20. When using
the PER kernel, we set σp = 1, lp = 0.5, and p = 150. As for
the QP kernel, the parameters for the composing SE and PER
kernels are the same as those used in the standalone cases.
Besides, the regularization parameter is set to be λ = 0.01.

The learning results are shown in Fig. 6. It can be observed
that the performance of each kernel in different learning
situations differs, implying the necessity of a proper design
of kernel functions to synthesize the α scores given a spe-
cific imitation task. For quantitative assessment, we define
the following imitation metric based on the average of the
accumulation of prediction errors. To evaluate the reproduction
behavior, we have

CT =
1

N

N∑
n=1

∆(s(tn),p(tn)), (36)

where ∆(s(tn),p(tn)) = arccos(s(tn)
⊺p(tn)) in the case

of spherical distance. Similarly, the evaluation metric for
examining the generalization effects is given by

CG =
1

M −N

M∑
m=N+1

∆(s(tm),p(tm)), (37)

where M represents the total number of prediction steps during
generalization. The obtained numerical results are summarized
in Table I.
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Demonstration Reproduction with different kernels 
Squared exponential kernel Periodic kernel Quasi-periodic kernel

Fig. 6. Illustration of learning different motion patterns on a manifold with different kernel functions, where the demonstration trajectory is shown in the first
column, the motion skills reproduction is achieved by the SE kernel (second column), the PER kernel (third column), and the QP kernel (fourth column). The
representative motion patterns to capture are stroke-based trajectory (top row), periodic trajectory (middle row), and quasi-periodic trajectory (bottom row),
where the solid lines denote the reproduction part and the dashed lines denote the generalization part. For each imitation instance, we first plot the trajectory
evolution on the manifold, underneath which we show the temporal evolution of each trajectory dimension.
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(a) (b)

(c) (d)

Fig. 7. Illustration of geodesic distance calculation using the spherelet
approach on the forehead, cheek, and chin of Nefertiti’s face. (a) The plot
of point cloud data of Nefertiti’s face on which we calculate the geodesic
distances with (b) one spherelet, where we denote the terminal points with
black dots and exemplify the osculating sphere for the cheek in purple, (c)
two spherelets, where we denote the segmentation and intersection points with
red dots and plot grid lines with dashed grey lines, and (d) three spherelets.

B. Geodesic Distance Calculation

In this section, we showcase the efficacy of the spherelets-
based approach for calculating geodesic distance, using the
face of Nefertiti as an illustrative example (refer to Fig. 7(a)).
Our goal is to calculate the geodesic distance on Nefertiti’s
face surface that is expressed by the corresponding point
cloud data. To begin with, we align the facial data points to
ensure that the least principal component aligns parallel to
the z-axis, and the face surface is symmetrically positioned
with respect to the y-axis. For the projection plane, we select
z = −6, which is parallel to the x-y plane. In each region
of the forehead, cheek, and chin, we approximate the surface
patch with one spherelet, two spherelets, and three spherelets,
respectively. The geodesic distance calculated in each region
using different numbers of spherelets is shown in Fig. 7(b)-(d).

For comparison, we also calculate the geodesic distances
between the same endpoints using other methods, including
ISOMAP (with the Floyd algorithm for pairwise geodesic dis-
tances), MDS, Heat Flow, and the Eikonal approach. Besides
comparing the geodesic distances, we also record the total
required running time. Table II summarizes the comparison
results. It can be seen that our approach achieves on-par perfor-

Demonstration
face

Adaptation to a new face

Fo
re

he
ad

C
he

ek
C

hi
n

w/o regulation w/ regulation

Fig. 8. Illustration of reference trajectory on the demonstration face (left
column), its reproduction on a new face without regulation (middle column),
and its reproduction on a new face with (right column).

mance in the meanwhile possessing the merit of considerably
reducing the computational time.

C. Skill Adaptation to New Faces

Here we evaluate the effectiveness of the probabilistic non-
rigid registration technique. The goal is to justify the necessity
of imposing additional regulation effects when performing an
adaptation of a trajectory from the demonstration face to a new
face. We investigate the adaptation behaviors on the regions
of the forehead, cheek, and chin whose shapes are determined
using nine, seven, and six landmarks, respectively.

An illustration of the regulation effects is depicted in Fig. 8.
During the evaluations, we set the smoothing parameter to
be λ = 0.5. For trajectory modulation on the forehead, the
control point besides the hairline is assigned with a weight
matrix of 20I, thus prohibiting the adapted trajectory from the
potential interference with the subject’s hair. For adaptation
on the cheek region, we improve the occlusion between the
adapted trajectories and the cheek surface by setting the cheek
tip control point with a weight of 1e2I. Regarding the chin
region, we choose the weight matrix as 10I for the critical
control points, stretching the demonstration trajectories to fit
the wide chin of the new face.

D. Comparison with Baselines

In this section, we compare our proposed approach with
several representative state-of-the-art movement primitive al-
gorithms in terms of imitating geometric motion with periodic-
ity. Specifically, for benchmark baselines, we select Geometry-
Aware Dynamics Movement Primitives (GA-DMP) [13], Rie-
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Fig. 9. Schematic illustration of the learning results with different imitation
algorithms. The demonstrated ′1′, ′0′, and ′8′-shaped periodic trajectories
(dashed black line) are separately learned by our approach (green), GA-
DMP(yellow), R-LQT (red), and Ori-ProMP (blue), respectively.

TABLE III
LEARNING ERRORS OF DIFFERENT MOTION IMITATION ALGORITHMS.

”1” ”0” ”8”

GA-DMP [13] 0.0371 0.0406 0.0572

R-LQT [14] 0.0144 0.0224 0.0312

Ori-ProMP [15] 0.0322 0.0161 0.0124

Our approach 0.0065 0.0075 0.0022

mannian Linear Quadratic Tracking (R-LQT) [14], and Ori-
entation Probabilistic Movement Primitives (Ori-ProMP) [15]
that represent the geometry-aware counterparts of the classical
dynamics movement primitives, linear quadratic tracking, and
probabilistic movement primitives. We specify three periodic
demonstration trajectories that evolve on a unit sphere to
imitate, namely ′1′, ′0′, and ′8′.

For our approach, we use the PER kernel, and the relevant
parameters are selected to be σp = 1, lp = 2, and p = 100. We
use 30 Von-Mises basis functions per dimension for GA-DMP,
which is defined as exp(cos(2π(t− ci))/h), where h = 5
defines the width of the basis function and ci determines
the uniformly distributed center of the i-th basis function
within the period range. For imitating with R-LQT, we set the
penalization matrix on the control inputs to be 0.2I and the
time window is 30 steps. Regarding Ori-ProMP, the number
of basis functions is 30 and the learning rate is 0.05.

The learning performances by all the algorithms are de-
picted in Fig. 9, which implies that all the algorithms can
truthfully reproduce the demonstrated trajectories. We then
quantify the imitation performances based on the imitation
metric of (36), and the obtained numerical results are summa-
rized in Table III, revealing that our approach exhibits a high
level of imitation fidelity.

E. Skin Photorejuvenation Experiments

In this section, we conduct real experiments to learn the
treatment trajectory of skin photo-rejuvenation from demon-
strations. Fig. 10 presents the overall experimental setup. A

Fig. 10. Illustration of the experimental setup for performing robotic cosmetic
dermatology using photorejuvenation.

Fig. 11. Snapshots of the demonstration procedure where the treatment motion
on a human forehead is transferred by passive observation.

UR5 robot arm from Universal Robots is employed, and a
laser cosmetic instrument fixed with a 3D-printed fixation case
is attached to its end-effector. For the sensing system, we use
an Intel RealSense D405 RGBD camera to scan the subject’s
face for the point cloud data. Also, the OptiTrack motion
capture system is used to record the demonstrated trajectory
with the markers attached to the laser cosmetic instrument.
For the laser system, the pulse frequency of the laser shots is
controlled with an on-board relay. We set constant values for
the pulse frequency with 10Hz. In addtion, we set the thermal
power as 100mJ, and spot diameter as 10mm. Throughout
the experiment, the involved human subjects1 exposed to the
laser pulses are asked to wear a pair of protective goggles.

During the skill transfer phase, the point cloud data of
the subject’s face is first obtained by the depth camera.
Subsequently, a dermatologist personally demonstrates the
desired treatment trajectory by manipulating the laser cosmetic
instrument, which is recorded by the motion capture cameras.
During the treatment, the involved subject is required to remain
in a still supine position. The demonstration procedure by
passive observation can be seen in Fig. 11.

1Ethics Approval Reference Number: HSEARS20201202001, Human Sub-
jects Ethics Sub-committee, Departmental Research Committee, The Hong
Kong Polytechnics University, Hong Kong.
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Fig. 12. Illustration of temporal evolutions of the trajectory of (a) demon-
stration, and reproduction with the (b) SE kernel (c) PER kernel, and (d) QP
kernel where solid lines denote the reproduction trajectory and dashed lines
denote the generalization trajectory.

(a) (b) (c)

Fig. 13. Illustration of the learned geometric trajectory (red) from the
demonstrated motion (black) by (a) SE kernel (b) PER kernel, and (c) QP
kernel where solid lines denote the reproduction trajectory and dashed lines
denote the generalization trajectory, and the segmentation with spherelets is
represented by different colors.

We first evaluate the reproduction performance in terms of
treating the same subject as in the demonstration. Likewise,
we compare the learning performance using the SE, PER,
and QP kernels to learn the demonstrated motion pattern. The
learning results are shown in Fig. 12. Besides, the trajectory
evolution on the facial point cloud is shown in Fig. 13. It can
be seen that the trajectory prediction by the QP kernel attains
the best performance as the demonstration trajectory exhibits
a quasi-periodic motion pattern. The quantitative evidence of
the learning performances by all three kernels is summarized
in Table IV, where the evaluations for motion reproduction
and generalization are conducted regarding (36) and (37),
respectively. Once the trajectory is learned with the QP kernel,
we then reproduce the treatment trajectory on the subject, as
shown in Fig. 14.

Finally, we study the issue of adapting the learned trajectory
from the face in the demonstration to the faces that were
unseen before. When a new subject comes to receive the
treatment, we first scan the face for the corresponding point
cloud data. Afterwards, we select the landmarks on the point
cloud that are used for transferring the learned demonstration
trajectory. Fig. 15 shows the point cloud for the demonstration
face and two new subjects’ faces. The red dots mark the
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Fig. 14. Snapshots of reproduction of the treatment skill on the demonstration
face with a robot arm.

TABLE IV
LEARNING ERRORS WITH DIFFERENT KERNELS.

SE PER QP
Reproduction 0.001 0.03 0.0008

Generalization 0.125 0.06 0.01

source control points on the demonstration face as well as
the target control points on the new faces. The procedure of
the adaptation treatment is shown in Fig. 16.

VI. CONCLUSION

In this paper, we have addressed the issue of robotic
cosmetic dermatology using the learning-by-demonstration
paradigm. Specifically, we have tackled the challenge of mo-
tion imitation through the lens of structured prediction, which
is powerful in handling geometry-structured data arising from
facial surfaces. Additionally, we have developed an adaptation
strategy based on the non-registration technique to treat the
facial surface of a new subject, which was not observed
during the demonstration. The real-world experiments have
shown our proposed method’s effectiveness in performing
photorejuvenation for cosmetic dermatology.

There are still some limitations associated with our proposed
approach. For instance, in the current setup, we require the
human subject to maintain a static position throughout the
treatment. Ideally, it would be favorable to incorporate reactive
behaviors in the robot to respond to potential movements from
the region of interest [38]. Undoubtedly, the integration of
robotic technologies into the beauty industry holds promise,
and we plan to continue our efforts in this direction. For future
work, we intend to conduct further tests to obtain quantitative
evidence regarding the administration of thermal doses for
enhancing skin conditions; We are currently working on the
development of new thermal servoing controls (e.g., as in [39])
for these types of laser-based procedures.

APPENDIX A
NOTATION

The notation used throughout the paper is in Table V.
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(a) (b) (c)

Fig. 15. Illustration of adapting the laser trajectory on the demonstration
face (a) towards other unseen faces (b) and (c) where red dots denote the
landmarks used for performing trajectory transfer.
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Fig. 16. Snapshots of adaptation of the demonstrated treatment skill to other
new faces that are not involved in the demonstration.

APPENDIX B
PROOF OF PROPOSITION 1

In this section, we show that the behavior of the trajectories
in the surrogate space can also lead to the corresponding
behavior in the structured space that has a loss function of
the geodesic distance. We first illustrate the arithmetic case.
For convenience, we denote

a+ 1 := a+, a− 1 := a−, and P(τ + aT ) := Pa. (38)

From (15a), we equivalently have the following

∆(Pa− ,Pa) = ∆(Pa,Pa+) = ∥C(τ)∥, (39a)
∆(Pa− ,Pa+) = ∆(Pa− ,Pa) + ∆(Pa,Pa+). (39b)

By using (1), we can express (39a) as

⟨Ψ(Pa−),VΨ(Pa)⟩H = ⟨Ψ(Pa),VΨ(Pa+)⟩H. (40)

TABLE V
SUMMARY OF KEY NOTATIONS.

Notation Description

M
at

h

(·)⊺ Transpose operator
⊗ Kronecker product
⊙ Hadamard product
H Hilbert space
◦ Function composition
I The identity matrix

⟨·, ·⟩H Inner product of H
Γ Parallel transport
Exp Exponential mapping

∇M, ∇ Riemannian, Euclidean gradient
∥ · ∥Frob Frobenius norm
Tr(·) Trace of a matrix

blockdiag(·) Block-diagonal concatenation
Proj Orthogonal projector
Q,R QR composition matrices

L
ea

rn
in

g

T Dataset of demonstration
c, c−1 Decoding, encoding rule

g Surrogate mapping function
s Predicted structured output
L Surrogate loss
∆ SELF loss function
V Continuous linear operator
Ψ Feature map

k(·, ·) Kernel function
σ, l Hyperparameters of kernel
K Matrix-valued kernel
K Gram matrix
α Score function

R
ob

ot

S Surface manifold
S2 Sphere manifold
t Trajectory time stamp
p Cartesian position
T Trajectory period

O, r Center, radius of osculating sphere
C(O, r) Algebraic fitting loss

F Point cloud of facial surface
lpv , lph Vertical, horizontal grid lines
ξs, ξp Segmentation, intersection points
Πs

p(·) Mapping from projection plane to sphere
f(·) Adaptation rule
E(·) Bending energy
ξ̂, ξ̂′i Source, target control points
ρ Thin-plate spline basis

Denoting δΨa := Ψ(Pa)−Ψ(Pa−), the LHS of (40) can be
shown to be

⟨Ψ(Pa−),VΨ(Pa)⟩H (41a)
=⟨Ψ(Pa−),V(Ψ(Pa−) + δΨa)⟩H (41b)
=⟨Ψ(Pa−),VδΨa⟩H (41c)
=⟨Ψ(Pa)− δΨa,VδΨa⟩H (41d)
=⟨Ψ(Pa),VδΨa⟩H, (41e)

where we have used the linearity of the inner product and the
fact that ⟨Ψ(p),VΨ(p)⟩H = ∆(p,p) = 0. Also, the RHS
of (40) can be shown to be

⟨Ψ(Pa),VΨ(Pa+)⟩H (42a)
=⟨Ψ(Pa),V(Ψ(Pa) + δΨa+)⟩H (42b)
=⟨Ψ(Pa),VδΨa+⟩H. (42c)

From (40), we then equate (41e) and (42c), leading to

⟨Ψ(Pa),VδΨa⟩H = ⟨Ψ(Pa),VδΨa+⟩H. (43)
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For (39b), its LHS can be written as

⟨Ψ(Pa−),VΨ(Pa+)⟩H (44a)
=⟨Ψ(Pa)− δΨa,V(Ψ(Pa) + δΨa+)⟩H (44b)
=⟨Ψ(Pa),VδΨa+⟩H − ⟨δΨa,VΨ(Pa)⟩H−

⟨δΨa,VδΨa+⟩H. (44c)

Also, the RHS of (39b) can be written as

⟨Ψ(Pa−),VΨ(Pa)⟩H + ⟨Ψ(Pa),VΨ(Pa+)⟩H (45a)
=⟨Ψ(Pa)− δΨa,VΨ(Pa)⟩H + ⟨Ψ(Pa),VδΨa+⟩H (45b)
=− ⟨δΨa,VΨ(Pa)⟩H + ⟨Ψ(Pa),VδΨa+⟩H. (45c)

By equating (44c) and (45c) due to (39b), we then have

⟨δΨa,VδΨa+⟩H = 0. (46)

It can be seen that the condition δΨa = δΨa+ := δΨτ

is sufficient to make both (43) and (46) hold, implying that
the following arithmetic pattern in the surrogate space leads
to (15a).

Ψ(Pa) = Ψ(Pa−) + δΨτ . (47)

For the cumulative case (15b), we equivalently have

∆(Pa− ,Pa)/a = ∆(Pa,Pa+)/a+ = ∥C(τ)∥, (48a)
∆(Pa− ,Pa+) = ∆(Pa− ,Pa) + ∆(Pa,Pa+). (48b)

For (48a), the following can be shown

⟨Ψ(Pa),Va+δΨa⟩H = ⟨Ψ(Pa),VaδΨa+⟩H. (49)

Likewise, we can also obtain (46) for (48b).
Consequently, it can be seen that the condition a+δΨa =

aδΨa+ is sufficient to make both (48a) and (48b) hold. By
choosing δΨa := aδΨτ , the following cumulative pattern in
the surrogate space then gives rise to (15b).

Ψ(Pa) = Ψ(Pa−) + aδΨτ . (50)
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