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Abstract—The ability to wield tools was once considered
exclusive to human intelligence, but it’s now known that
many other animals, like crows, possess this capability.
Yet, robotic systems still fall short of matching biological
dexterity. In this paper, we investigate the use of Large
Language Models (LLMs), tool affordances, and object ma-
noeuvrability for non-prehensile tool-based manipulation
tasks. Our new method employs LLMs based on scene
information and natural language instructions for symbolic
task planning. Using a new tool affordance model derived
from visual feedback, we develop a manoeuvrability-driven
controller to guide the robot’s tool utilisation and manip-
ulation actions. The proposed methodology is evaluated
with experiments to prove its effectiveness under various
manipulation scenarios.

Index Terms—Tool manipulation; Task allocation; Affor-
dance modelling; Task and motion planning; Robotics.

I. INTRODUCTION

BEING able to use tools is a widely recognised indicator
of intelligence across species [1], [2]. Humans, for in-

stance, have demonstrated mastery of tool use for over two
million years [3]. The ability to use tools is invaluable as
it extends an organism’s reach and enhances its capacity to
interact with objects and the environment [1]. Being able to
understand the geometric-mechanical relations between tools-
objects-environments allows certain species (e.g., apes and
crows [4]) to reach food in narrow constrained spaces. The
same principles of physical augmentation and its associated
non-prehensile manipulation capabilities also apply to robotic
systems [5]. For example, by instrumenting them with different
types of end-effectors, robots can (in principle) dexterously
interact (e.g., push and flip) with objects of various shapes
and masses akin to its biological counterpart [6]–[8]. However,
developing this type of manipulation skill is still an open
research problem. The goal of this paper is to develop a
methodology to effectively transport objects through non-
prehensile tool manipulation actions.

Effective tool utilisation by a robot involves primarily two
aspects: (1) task planning and (2) tool movement [9]–[11].
Task planning is typically regarded as a cognitive high-level

H.-Y. Lee, A. Duan, W. Ma, and D. Navarro-Alarcon are with the
Department of Mechanical Engineering, The Hong Kong Polytechnic
University, Kowloon, Hong Kong. (contact e-mail: dna@ieee.org)

P. Zhou is with the Department of Computer Science, The University
of Hong Kong.

C. Yang is with the Department of Computer Science, University of
Liverpool, Liverpool, L69 3BX, UK. (e-mail: cyang@ieee.org).

Tools

Walls Block

Fig. 1. Tool-Object manipulation in a dual-arm robotics system with
environmental constraints using the non-prehensile approach.

process in robotics, mainly used for environmental reasoning,
task decomposition, allocation of action sequences, etc. [12].
However, recent trends have been pushing towards the use
of LLMs to leverage the domain knowledge for semantically
decomposing and planning the execution of manipulation
tasks [13]–[16]. Some examples of this directions include
[14], [15], which developed an environmental feedback-based
system for context-aware improvement planning. Leveraging
the generative capabilities of LLMs, motion sequences can
be generated for robots as demonstrated in [16]–[18]. The
combination of traditional motion planners with LLMs has
been explored in [13], [19], [20].

In addition to task planning, various manipulation method-
ologies have been developed to model the relation between
tools and objects [21]. The success of a given tool-object
manipulation task largely depends on the appropriate selection
of the tool. For example, robots can identify the tool type,
potential uses, and contact approaches based on the tool’s
geometry, see e.g., [2], [9]. In [22], tool features are learned
through observation of the task’s effects and experimental
validation of feature hypotheses. Affordance models are a
common technique used for tool feature selection [23]–[25]
and tool classification [25]–[27]. The relation between tool ac-
tions and its effects on objects is explored in [27], [28], where
robots acquire affordance knowledge through predefined ac-
tions (e.g., pull, push, rotate). Recently, researchers have also
explored the use of LLM in accelerating affordance learning
in tool manipulation [2]. Some works have studied tool-based
manipulation under constraints and from demonstrations [29],
[30]. Non-prehensile object manipulation strategies have been
used in [31], [32].

Although there are many studies on robotic tool use, the col-
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Fig. 2. (a) The task environment includes a camera for real-time top-view capturing, a dual-arm robot, tool(s), and a blue block to be manipulated
to the target location. (b) The architecture of our system: Unstructured data input is converted to a subtask list in the symbolic task planner with an
LLM, a manoeuvrability-driven planner to compute the tool’s manoeuvrability and generate an affordance-oriented motion and path. (c) Execution
process of the result given by the system: dual-arm robots take turns pushing the blue block from one side to another via collaboration.

laborative tool-based object manipulation by dual-arm systems
based on non-prehensile actions remains an underexplored
problem. To address this research gap, in this work we propose
an novel LLM-based manoeuvrability-driven method with the
following original contributions: (1) We develop an effective
model to represent the geometric-mechanical relations and
manoeuvrability of tools and objects; (2) We propose a non-
prehensile strategy to manoeuvre objects under different con-
straints with tools; (3) We evaluate the performance of the
proposed methodology with real-world experiments on a dual-
arm robotic system.

The rest of the manuscript is organised as follows: Sec. II
presents the methodology, Sec. III presents the results, Sec.
IV gives final conclusions.

II. METHODOLOGY

A. Problem Formulation
Consider a dual-arm robotic system using a tool to manip-

ulate a block at a far distance (see Fig. 1). Given the input is
a free-form language task L (e.g., “move the block to Point
B”), we apply a high-level symbolic planner (i.e., a LLM) to
decompose the task into multiple subtasks li, L = {l1, l2, . . . }
where L contains a list of pre-defined motion functions li.

We define a tool as a manipulable object that is graspable by
a robot, a manipulandum [9] as an object (e.g. a block) that is
manipulated via a tool, and a wall as a static non-manipulable
object. Tool use by robots is challenging as the tools can
have various shapes, the environment can be dynamic, and the
contact between the tool and the manipulandum may be hard to
maintain in a long-horizon task. Depending on the geometric
features of a tool and a wall, the available affordance for
manoeuvring a manipulandum may be different. Affordance
here refers to the available action-effects offered by the tool
or the environment. In this work, we classify affordance into
two types: active and passive. Active affordance is given from
a manipulable object, i.e. a tool, and it is directly related to

the manoeuvrability when driving a manipulandum. Passive
affordance is given from a static non-manipulable object.

To derive our methodology, the following setup assumptions
are made: (1) The manipulation motion is planar, and (2)
the size of the manipulandum is not larger than any one of
the segments of the tool. Throughout this paper, we denote
“tool-based object manipulation” as TOM, and “tool-based ob-
ject manipulation under environmental constraints” as TOME.
Also, we use p◦ to represent the 2D pose of an object ◦. The
complete architecture of our method is depicted in Fig. 2.

B. LLM-Based High-Level Symbolic Task Planner
To obtain a valid task decomposition for a long-horizon

task, the system needs to understand the requirements and
generate an executable subtask list. We develop a symbolic
task planner that takes natural language instructions with scene
descriptions as input, and outputs a list of high-level subtasks.
The list involves the tool selection/sharing between two arms,
the sequence to manipulate the tool with the manipulandum,
and the interaction between the two arms. The model is fine-
tuned with around 20,000 lists of example data. These two
data sets are generated randomly with different environment
settings, such as different locations of the manipulandum,
target destination, robots, and tool shapes.

The system interprets the provided high-level task L, which
can have a structure like “Please move the blue block to the
right-hand side”, “Can you push the block to the target?”, etc.
Visual information of the scene is grounded to the system
from the observation data o, where o is composed of a series
of data points, such as the pose of the block (manipulandum),
tools, robots, and walls. The system embeds the environmental
information with the task instruction to produce a desired
configuration requirement, denoted as {pobj,ptarget, . . . } ←
f(L,o) where f(L,o) is the embedded result.

The LLM interprets the output of f(L,o) to generate
a subtask list {l1, l2, . . . } ← fllm(f(L,o)) where li is a
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Fig. 3. (a) Affordance vectors are shown in pink arrows. Grey arrow is
vtarget and the desired affordance vector is denoted as a∗. (b) shows
the manoeuvrability analysis flowchart: affordance area is visualised
with the Gaussian function in yellow and blue; expand and downsample
the tool’s shape to get key points Pkey (green colour dots); combine
the affordance area with the key points Pkey to get the non-redundant
points P⋄ (red dots), and combine the affordance a∗ found in (a) to
obtain the position for the manipulandum to be at with the tool (labelled
as p∗ with a red dot) and the highest manoeuvrability region is shown
with a dashed red circle.

subtask describing the manipulation phase of each robot [33]
and is corresponding to a high-level robot motion func-
tion. The motion functions are designed to be simple and
specify a short-term goal of the concerned object (these
functions omit low-level motion commands). For simplicity,
here we use m to represent manipulandum in the follow-
ing function definitions. We use grab(arm, tool) for grab-
bing a tool with the robot arm; approach(arm, tool,m)
for approaching the location of m with tool using arm;
interact(arm, tool,m, goal) for moving m to the goal loca-
tion with the tool; stepping(arm, tool,m) for moving m out
from the bounded are with the tool of the arm through contact
pulsing motions; pass(arm1, tool,m, arm2) for passing m to
another arm’s workspace; release(arm, tool) for releasing
the tool back to its original place with the arm.

A sample motion task with a dual-arm robot can given as:
{pass(right, hook, block, left); approach(left, stick, block)
interact(left, stick, block, target); . . . } ← fllm(f(L,o)),
where both arms take turns manipulating the block. The right
arm passes the block to the left by pushing it to an area
where both arms can reach it. The left arm approaches the
block with a stick and manipulates the block to the target. To
this end, the symbolic task planner converts the unstructured
data to a series of motion functions, including robot motion,
tool planning, manipulation sequence, and collaboration.

C. Visual Affordance Model

Tools can have various shapes and complex structures. In
this paper, we focus on the following tool geometries: a stick,
an L-shaped hook, and a Y-shaped hook. Affordances are
related to the geometric features of a tool [34]. To analyse the
possible affordances, we divide the tool into smaller segments
(i.e. a line), and denote them as S = {s1, s2, . . . , sn} where
si and si+1 are segments next to each other. We compute
the normal vectors of the segment at the middle point and
scale them by half of the segment’s length. This is done
to weight the affordance effect this regions carries. There
are two affordance vectors per segment si, each pointing in
opposite directions, as depicted in Fig. 3(a). Let us define
A = {a1,a2, . . . ,a2n} as the structure that contains all the
affordance vectors ai, for n as the number of segments.

To determine which affordance vector ai will be used to
interact with the manipulandum, we compare the similarity
between ai and the vector from the manipulandum’s position
to the target point vtarget by:

θi = cos−1

(
vtarget · ai
∥vtarget∥∥ai∥

)
(1)

where θi is the similarity score. The optimal affordance vector
a∗ and its according segment s∗ are found by locating the
vector that has the minimum similarity score argmina(Θ)
where Θ = {θ1, θ2, . . . }.

D. Manoeuvrability Analysis

A tool can push the manipulandum from the side, from
the tip, or other areas. However, the relative location of the
manipulandum respective to the tool affects its manoeuvra-
bility. In other words, the affordance provided by the tool
is proportional to manoeuvrability. Consider using a rotating
stick to push an object with its end tip. In this situation, the tool
may lose contact with the manipulandum as it rolls outwards,
hence, the manoeuvrability of this point is low. On the other
hand, the midpoint of the stick has a high manoeuvrability,
which proportionally decreases as the contact point is further
away from the midpoint. We can model this behaviour with
a Gaussian function, where its centre is the segment’s centre
and the peak height is half the segment’s length, see Fig. 3(b).
We refer to this region as an affordance area.

All the pixels in the affordance area of si are set to 1 in an
image frame Ii and the rest to 0, which creates a binary image;
This process is repeated for all segments. All binary images
are then summed as Î =

∑n
i=1 Ii where n is the number of

segments. The affordance of tool segment is quantified with
the (normalised) manoeuvrability matrix: M = Î/Îmax, for
Îmax as the maximum value in Î. Tool regions with high values
in the image M reflect a high manoeuvrability.

These computed manoeuvrability values are useful to de-
termine the location where the tool interacts with the ma-
nipulandum. To determine the centre of the object, we then
expand the contour of the tool by the object’s radius robj. This
contour is downsamppled with the Ramer-Douglas-Peucker
algorithm [35], then, parameterised with the spline fitting
technique reported in [36]. To extract key features of the tool
geometry, we use a sliding window strategy to examine a small
number of neighbouring points. If there exists a point where its
curvature is larger than a threshold in the local neighbourhood,
we consider this point as one of the feature points.

To compute the minimal number of key points (denoted
as Pkey = {pkey

1 ,pkey
2 , . . . }) that capture the highest ma-

noeuvrability among feature points, we use the density-based
clustering algorithm from [37]. By integrating the affordance
areas we obtained earlier, we can filter out some redundant key
points. For example, if there exists a point pkey

i located outside
the affordance area (visualised in Fig. 3(b)), we consider this
point as redundant. All the non-redundant points are then
grouped into P⋄ = {p⋄

1,p
⋄
2, . . . }. To find the point in P⋄

with the highest manoeuvrability (defined as p∗), we use the
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Fig. 4. (a) The tool is virtually aligned to the current object and the goal
location, with p∗ = pobj and p∗ = pgoal. (b) The light blue dashed
line is the radius of the orange circle Cstart and Cend, which equals the
distance between ptool and p∗. The tool moves from pint

start to pint
end by

following the dark blue dashed trajectory line.

manoeuvrability matrix M and distance between p⋄
i and a∗

as described in the metric below:

p∗ = argmin
p⋄

i

((1− [M]p⋄
i
) + ∥p⋄

i − a∗∥) (2)

where [M]p⋄
i

denotes to the image value of M at point p⋄
i .

The region with the highest manoeuvrability is defined as the
circle (with object radius) centred at p∗. (see Fig. 3(b))

E. Manoeuvrability-Oriented Controller
The subtask “interact” triggers the robot to use the

selected tool to drive the manipulandum towards the desired
location. In this section, we derive our method to perform
this type of motion assuming that the tool approaches the
object and is going to make contact with it in the subtask
“interact”.

1) Initial and Final Poses: The tool’s pose corresponds to
its grasping configuration, which coincides with the robot end-
effector’s pose when the robot grasps the tool (see Fig. 4). We
use ptool to denote the tool’s grasping point (x, y coordinates)
when it has not come in contact with the object. To construct
a trajectory for tool-based object transport, we need to find
out the tool’s desired initial and final poses for the subtask
“interact”. We first define these poses (which include the
orientation) of the chosen tool as pint

start and pint
end respectively.

To efficiently move the object, we propose a method that
reduces the travel distance while ensuring continuous contact.
In the first contact, we align the highest manoeuvrability point
p∗ of the tool to the object’s centre pobj, where p∗ = pobj.

The motion trajectory of a tool, moving along the z-axis of
the object’s centre without displacing it can be described as
a circular trajectory with the centre pobj and radius r, where
r = ∥p∗ − ptool∥. We represent the trajectories for the initial
and final configurations as Cstart and Cend (see Fig. 4(a)).

The possible location for pint,x,y
start will be lying on Cstart and

can be determined by finding a point on Cstart which it is the
closest point to the robot (the distance is indicated with a light
green dashed line in Fig. 4(b)). Based on the tool’s geometry,
we can determine the orientation of the initial pose pint

start; The
same approach applies to pint

end.
2) Motion Strategy: To stably move from pint

start to pint
end, the

following motion strategy is implemented to achieve the task:
First, the robot aligns p∗ with pobj and matches ptool with

Fig. 5. (a) Walls are in red with the segment of the wall swall
i highlighted

in black; blue arrows are the passive affordance vector and green arrows
indicate the moving direction of vexit. (b) The tool pose moves from τ to
τ + 1 by rotating with ∠rot and translating linearly to pee

τ+1. (c) Rotation
direction of a tool: anti-clockwise and clockwise direction.

pint
start; then translates along the x and y axes until it reaches

pint,x,y
end ; lastly, the tool is rotated to align with the orientation

of pint
end.

F. Application with Environmental Constraints
When moving an object across a table, we may encounter

constraints from the environment, such as walls. These con-
straints restrict the potential movement directions of the object.
Formally, a constrained area can be defined by a series of
points where more than one axis of freedom of the manipu-
landum motion may be restricted. In this section, we focus on
the motion triggered by the subtask ‘stepping’.

Consider the manipulandum is tightly confined within a
concave-shaped wall, as shown in Fig. 5(a), with an unknown
exit and assume that the tool can enter the constrained area.
To move the manipulandum out from the bounded area with
small movement space, we determine the direction from the
manipulandum to the exit by considering the overall affor-
dance of the wall boundary. We denote this direction vector
as vexit, and its magnitude is defined as the minimum travel
distance for the manipulandum. We consider the inner edge
of the wall as a segment swall

i where i = {1, . . . , nwall} and
nwall is the number of the wall segment. The affordance of
a wall is passively provided and is defined as awall

i with the
model shown in Sec. II-C. The passive affordance vector is the
normal vector of swall

i located in the middle, and the magnitude
is scaled to half of swall

i with the direction pointing towards the
constrained area. The moving direction for the manipulandum
to the exit can be obtained by: vexit =

∑nwall

i=1 awall
i +pobj where

vexit integrates all passive wall affordance vectors, see 5(a).
Given that only part of the tool can enter the confined area,

our primary focus is the tip of the tool. The segment connect-
ing of the tool’s tip is denoted as stip, with its corresponding
affordance vector denoted as atip. The desired rotation angle
of the end pose of atip is the angle of vexit.

The highest manoeuvrability region can be obtained by
treating vexit as the target vector vtarget, atip as the desired
affordance a∗, and assuming the tool is rotated such that
atip = bvexit with b > 0 as a scaling factor. We first
align stip to the first segment of the wall (i.e. s1), with pobj

inside the highest manoeuvrability region of the tool. The
tool approaches the object and maintains contact with the
manipulandum by minimising the distance ∥p∗ − pobj∥.
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To move in the limited area while interacting with the block,
we employ a stepping approach to manipulate the block in the
confined area. As the possible movement area is small and
highly restricted, an incremental pulsing motion is adopted to
make small adjustments with high accuracy motion control
to the tool and the manipulandum. Inspired by the animal
manipulation study in [4] (where a crow uses a tool to get
the food from the box slot by rotating and dragging the tool
outwards), we adopt a similar approach to retrieve the object
from confined spaces. This strategy continuously alternates
between “repositioning” the tool and incremental “rotation-
dragging” the object towards the exit until it can be fully
extracted. This strategy is illustrated in Fig. 5.

We define “repositioning” as moving the tool closer to the
object and realigning p∗ with pobj by k amount. In “rotation-
dragging”, the tool maintains contact with the manipulandum
when it rotates by a certain angle as ∠rot shown in Fig. 5(b)
and moves outwards by extending

−−−−→
pee
τ p

ee
rot by a w > 0 amount.

We define τ as an action step variable and is incremented
by 1 if an action (reposition/rotation-dragging) is fulfilled (i.e.
τ = 0, 1, 2, . . . ). To control the change of action, a step
function (denoted as u(τ)) is implemented as a trigger with
the step variable τ . This kind of non-prehensile crow-inspired
behaviour can be unified and modelled as:

pee
τ+1 =

pee,x
τ

pee,y
τ

ϕτ

+ u(τ)

k(pobj,x
τ − px

∗)
k(pobj,y

τ − py
∗)

0


+ u(τ + 1)

w(pobj,x
τ − r cos(ϕτ )− pee,x

τ )

w(pobj,y
τ + r sin(ϕτ )− pee,y

τ )
f(ϕτ+1)


u(τ) =

{
0, if τ is odd
1, if τ is even

(3)

where pee
τ+1 is the next target pose of the end-effector at the

action step τ + 1 for the affordance vector atip not parallel to
vexit, such that atip ̸= bvexit. The angle of the tool at τ + 1
(denoted as ϕτ+1) depends on the rotational direction (see Fig.
5), that ϕτ+1 is computed as

f(ϕτ+1) =

{
− ∠obj− ∠rot if direction is anti-clockwise
− ϕτ + π − ∠obj− ∠rot otherwise

(4)
where ϕτ is the tool’s angle at the action step τ , ∠obj is the
angle between the block, grasping point, and a tool’s keypoint,
∠rot is the amount of angle to rotate.

III. RESULTS

To validate our methodology in terms of accuracy and
robustness, we have conducted around 200 experiments in a
dual-arm robot system. In the experiment, two sets of UR-
3 robotic arms are used and GPT 3.5 is implemented for
task decomposition. Three types of tools are selected which
are a stick, an L-shaped hook, and a Y-shaped hook (see
Fig.1). Different tool combinations are evaluated with diverse
movement directions and tasks. A RealSense D415 captures
the images of the whole process. Data is passed to a Linux-
based computer with the Robot Operating System (ROS) for

image process and robot control. Aruco code is used for
providing accurate pose tracing in real time.

These experiments include validating the task decomposi-
tion performance in a single and dual-arm robot setup, the
robustness of the affordance and manoeuvrability model in var-
ious shapes of tools, and evaluating the overall performance.

A. Single-Arm Robot with a Single Tool

We first evaluate the task decomposition performance
of LLM. For that, a tool and a blue block are placed on
the table with the target given as shown in Fig. 6. The
task is to manipulate the block within a close distance,
which is sufficient for a single-arm robot. The embedded
information which contains the task, the environment
and the geometry of the tool is passed to the LLM. In the
experiment shown in Fig. 6(a), the robot executes the subtasks
generated by the high-level symbolic task planner which
include: grab(right, hook); approach(right, hook, block);
interact(right, hook, block, target); release(right, hook),
where the right arm first moves and grabs the hook, then
moves the block to the target, and lastly releases the tool
back to its original place. The experiment showcases the
application of the proposed affordance and manoeuvrability
model in locating the highest manoeuvrability region for
block transportation. During the manipulation stage, the block
is kept within the highest manoeuvrability region (indicated
with a red circle in Fig. 6) to receive affordance effectively
from the tool. The minimisation of the error between the pobj

and the ptarget for each experiment is shown in Fig. 7. These
results corroborate that the proposed method can be used to
actively drive a robot to manipulate an object via a tool.

B. Dual-Arm Robot with Long-Horizon Task

We then evaluate the long-horizon task performance where
the block has to travel from far right to far left, far right/left
to top right/left, and vice versa. The long-horizon task is eval-
uated with multiple tool combinations. The system observes
and generates a collaborative motion plan. In the experiment
shown in Fig. 8(a), the right and left arms pick up the stick
and the hook respectively. The right arm uses the stick to push
the block to the left side, allowing the left arm to continue the
task. The robot leverages the advantage of the hook to drag
the block closer to its working area and push the block to the
desired location. In Fig. 8(b), the right and left arms grasped
the Y-shaped tool and the stick respectively. The right arm
uses the tool to pass the block to the left. The left arm uses
the stick to push the block to the target location.

The long-horizon task performance is evaluated with the
tool-sharing ability. Assuming there is only one tool available,
it has to be shared among the dual-arm robot. Fig. 8(c)
demonstrates the tool is passed to another arm once the block
is pushed to the middle of the table. The block is moved
accurately to the target with motion-decomposed: ‘grab;
approach; interact; pass; release; grab; approach;
interact; release’ where the left arm releases the tool once
it is done and the right picks up the tool to continue moving the
block. Though the hook is in a two-link geometry, the pushing
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Fig. 6. Single-arm robot with a single tool: moving the block from (a)
right to left with a hook, (b) right to left with a stick, (c) bottom to top with
a Y-shaped tool. The trajectory of the block is reflected in the red line.
The highest manoeuvrability point is indicated with a red circle.
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Fig. 7. Evolution of the minimisation process of the error between the
current object position and the target for the tasks shown in Fig. 6.

is afforded by the right side of the tool (a single segment) with
the highest manoeuvrability region.

The minimisation of the error between pobj and ptarget for
each experiment is shown in Fig. 9. Similar to the single-arm
robot with a single tool experiment, this long-horizon task
experiment also demonstrates the robustness of the proposed
methodology such that the tasks are successfully decomposed
into multiple collaborative subtasks, and the highest manoeu-
vrability region of the tool is leveraged in block manipulation.

C. Tool-Object Manipulation in Constrained Environ-
ments

To further evaluate the performance of the model in ap-
plication scenarios, different shapes of walls are constructed
as shown in Fig. 8(d)–(e). Two walls are designed with 90-
degree and 65-degree for the inner-angles. Maneuvering a
hook within a confined space presents greater challenges com-
pared to using a stick. Additionally, a Y-shaped hook proves
unsuitable for dragging objects in tight quarters. Therefore, in
this experimental study, we opt for a hook tool with a right
arm to navigate effectively within the constrained environment.
Similar to the previous results, Fig. 8(d)–(e) also implements
the task planner successfully to decompose the task and applies
the stepping controller for object manipulation. The tool first
aligns its stip to the first segment of the wall and adopts
the proposed non-prehensile stepping motion controller stated
in (3). The block is dragged out from the confined area by
alternating between the action of ‘repositioning’ and ‘rotation-
dragging’.

TABLE I
SUCCESS RATE COMPARISON FOR TASK DECOMPOSITION

Methods SRST Dual Sharing TOME Overall(%)

Zero-shot learning 2/10 1/10 1/10 5/10 22.5%
Few-shot learning 3/10 1/10 2/10 7/10 32.5%

FT (1000 data) 7/10 6/10 7/10 9/10 72.5%
Ours 10/10 9/10 9/10 10/10 95.0%

During the pulsing manipulation, the block maintains con-
tact with the highest manoeuvrability region. We visualise the
contact changes between the centre of the highest manoeuvra-
bility region p∗ with the block in Fig. 10(a). The error between
the pobj and the wall exit for each experiment are minimised
with time, as shown in Fig. 9.

D. Comparison
We analysed the affordance utilisation and provision for

the selected tools. This evaluation involves assessing the
frequency of contact between the block and the sides of the
tool segments. In the majority of instances, the block interacts
with the affordance primarily in the red region, as indicated
in Fig. 10(b) and aligns closely with our proposed model.

We have compared our system with other state-of-the-art
methods. In terms of the task decomposition with LLM, we
compare ours with zero-shot, few-shot learning [38], [39],
and a smaller dataset. The results of root mean square error
(RMSE) and mean absolute error (MAE) are shown in Table I
where FT states for fine-tunning, SRST states for a single-arm
robot with a single tool, Dual refers to dual arms collaboration
with two tools, and Sharing refers to tool-sharing collabo-
ration. We observe that prompting (zero-shot and few-shot
learning) is relatively unreliable, especially in long-horizon
tasks. This may caused by insufficient manipulation examples
given in the prompt. A smaller dataset with GPT 3.5 generates
an acceptable result, yet, it occasionally provides unneces-
sary/infeasible steps in long-horizon tasks. In general, all
methods demonstrate relatively positive outcomes in TOME,
potentially attributed to the task’s simplicity: extracting the
block from the constrained environment rather than aiming
for a specific destination. In summary, employing a larger
dataset with GPT 3.5 yields enhanced task decomposition
performance, leading to more precise results.

We assess the tool analysis method by identifying the high-
est manoeuvrability point across 30 tool images, with results
outlined in Table II. While the total variation regularisation
approach [40] is suitable for the stick case, the results are not
satisfactory. The keypoints-inspired approach [41] yields com-
parable results to ours; however, its accuracy diminishes with
increasingly complex shapes. Overall, our approach achieves a
better performance in terms of manoeuvrability computation.

IV. CONCLUSION

In this paper, we present a new manoeuvrability-driven ap-
proach for tool-object manipulation. The LLM is integrated for
task decomposition, generating collaborative motion sequences
for a dual-arm robot system. A compact geometrical-based
affordance model for describing the potential functionality and
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Fig. 8. Long-horizon task: moving the block from (a) far right to far left with a hook and a stick, (b) far top right to far left with a stick and a Y-shaped
tool, (c) far left to far right with a hook; and (d)–(f) exit from a confined area with a stepping controller. The block trajectory is reflected in pink and
the target is labelled with a blue square.
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Fig. 9. Evolution of the minimisation process of the error between the
current object position and the target for the tasks shown in Fig. 8.
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Fig. 10. (a) Stepping movement evolution of the change in contact
between the block and the highest manoeuvrability point for the tasks
shown in Fig. 8(d)–(f). 1 refers to in-contact and 0 refers to no contact.
(b) Contact frequency of a segment side: regions depicted in deeper red
indicate higher contact frequency with the block and a higher occurrence
of affordance provision.

computing the highest manoeuvrability region of a tool is
developed. A non-prehensile motion controller and a stepping
manipulation model are derived for TOM and incremental
movements in a constrained area. Experimental results are re-
ported and analysed for the proposed methodology validation.
We illustrate the performance of the proposed methods in the

TABLE II
ACCURACY COMPARISON OF MANOEUVRABILITY ANALYSIS

Methods RMSE MAE Overall

Total variation regularisation [40] 102.4 115.9 109.2
Keypoints-based [41] 31.7 31.5 31.6

Ours 28.6 29.2 28.9

accompanying video https://vimeo.com/917120431.

Our method introduces a new affordance and manoeu-
vrability paradigm for tool-based object manipulation. To
obtain a better performance, we split the model into task
decomposition and mathematical motion models. However, the
logical fault in the LLM’s response may be unseen and thus
lead to inappropriate motion. In our experiments, there are a
few times that the LLM presents infeasible plans. Moreover,
the current affordance model presents promising results with
simple geometrical shapes. Dynamics shapes like deformable
objects may be complicated to perform accurate modelling. In
terms of manoeuvrability, it may be complicated to compute
an accurate result for scenes with unstable illumination, low
contrast in images, large height differences in objects (tools
and the block), etc. We simplified these cases using ArUco
code for real-time object tracking in the experiments.

For future work, we would like to extend our method to
deal with deformable objects and/or environments, e.g., in the
case of manipulating objects with ropes or fabrics.

https://vimeo.com/917120431
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