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Abstract—Garment folding is a ubiquitous domestic task that
is difficult to automate due to the highly deformable nature of
fabrics. In this paper, we propose a novel method of learning from
demonstrations that enables robots to autonomously manipulate
an assistive tool to fold garments. In contrast to traditional
methods (that rely on low-level pixel features), our proposed
solution uses a dense visual descriptor to encode the demon-
stration into a high-level hand-object graph (HoG) that allows
to efficiently represent the interactions between the manipulated
tool and robots. With that, we leverage Graph Neural Network
(GNN) to autonomously learn the forward dynamics model from
HoGs; then, given only a single demonstration, the imitation
policy is optimized with a Model Predictive Controller (MPC) to
accomplish the folding task. To validate the proposed approach,
we conducted a detailed experimental study on a robotic platform
instrumented with vision sensors and a custom-made end-effector
that interacts with the folding board.

Index Terms—Tool manipulation, imitation learning, graph
dynamics model, cloth folding, hand-object graph.

I. INTRODUCTION

ROBOTS have been extensively used to support people in
a variety of activities of daily living (ADL). Garment

folding is a clear example of a monotonous service task
that can theoretically be performed by robots but which,
in practice, is difficult to solve by using these state-of-the-
art strategies [1], [2]. One possible solution to alleviate the
complexity of manipulating fabrics is to enable the robot to
learn how to use an assistive tool by observing an expert
demonstration and then imitating the behavior. This approach
is typically referred to as imitation learning (IL) [3], [4],
a technique that enables autonomous agents (e.g., robots)
to acquire complex skills from simple sensory data without
requiring to hard-code the strategies. Our aim in this work is
to solve the garment folding problem by using an assistive
tool under the imitation learning paradigm.

In contrast with other tasks solved by IL [5]–[7], the
folding of garments is particularly challenging due to the
high deformability and state dimension of fabrics. Previous
works rely either on computationally expensive representation
algorithms (i.e., based on polygonal models [8], particle-based
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models [9]) or elaborately designed manipulation pipelines
for ad-hoc cases of study [10]. Furthermore, traditional IL
approaches [11] assume that the state is fully observed (which
is very difficult to satisfy in practice) and utilize model-free
learning approaches (which typically demand large amounts of
sample data). As classical imitation policies directly generate a
mapping from the high-dimensional image space to the action
space, they lack physical interpretability.

Our work is related to both imitation learning and model-
based learning (see [11], [12] for comprehensive reviews).
Imitation learning aims to learn a policy that can replicate ex-
pert behavior and generalize to unobserved states from several
expert demonstrations comprised of state-action transitions.
This approach has been demonstrated in many robotic tasks
that are otherwise difficult to characterize, e.g., performing
natural human-like arm movements [13], playing table tennis
[5], and controlling the flight of a helicopter [6], to name a
few cases. Although these methods can achieve satisfactory
performance, they normally require demonstrations via tele-
operation or kinesthetic teaching to generate state/observation-
action transitions, which may not be possible to do in many
applications [14]. Learning from expert video recordings (e.g.,
of a human operator folding garments) is a feasible alternative
to this issue, however, this idea has not been sufficiently
studied in the context of soft object manipulation tasks [15],
[16].

Our aim in this work is to use imitation from observations
[17] for tool-based garment folding, with a policy that must be
learned from observations of a demonstrator’s state transitions
only. Therefore, model-based learning techniques [12] are
needed to learn the underlying dynamics model by collecting
action information. Though inverse reinforcement learning
(IRL) [18] can solve imitation learning from observations, it
typically learns the policy from a high-dimensional observa-
tion space (e.g., images), which has proven to be difficult to
apply in practice and lacks interpretability of the learned pol-
icy. To deal with this, we seek to encode the dynamics model
equation into a low-dimensional representation to help learn
imitation policies with high interpretability. Compared with
model-free approaches [19], model-based learning requires
fewer interactions with the environment, thus, making policy
learning more sample-efficient [20]; These learned models
could be easily applied to new tasks [21]. Recently, several
researchers have leveraged low-dimensional representations
and dynamics models for policy learning, see e.g., [22], [23],
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but robot end-effector representations and dynamics are not
considered which is critically important for imitation learning
on robotic manipulation tasks.

To address the above-mentioned issues, in this paper, we
formulate our proposed solution as a POMDP and employ
a view-invariant dense descriptor model for detecting visual
correspondences of the manipulated object (that is an assistive
tool for garment folding); By introducing an assistive folding
board, both manipulation efficiency and folding task quality
are guaranteed. More importantly, given that the predefined
points on the folding board can largely reduce state dimensions
and object deformability, this strategy enables the encoding of
the state observation into a high-level (but low-dimensional)
graph-structured representation, here called a hand-object
graph (HoG) model. The vertices of the HoG denote the
corresponding key points of the hand and the manipulated
object (viz., a folding board), whereas the edges represent
their relative 3D spatial configuration. We use a graph neural
network to build a forward dynamics model over the HoG to
predict transitions between HoGs and robot actions. During the
one-shot imitation, for each time step, the learned dynamics
model is used to optimize robot actions as the constraint for a
model predictive controller that solves the task with a folding
board in a closed-loop manner. While fixed automation (e.g.,
simple mechanical folders12) will continue to serve a role, our
vision-based robotic system offers key advantages for handling
the complexity, uncertainty, and frequent variations involved
in garment manufacturing. By learning diverse skills from
demonstration, these systems can achieve the re-configurability
and adaptability that the industry requires. Experimental re-
sults on a robotic platform are carried out to demonstrate
the effectiveness of our proposed framework. The original
contributions of this work are summarized as follows:

• A new approach of introducing an assistive folding board
to improve the performance of robotic garment folding
tasks.

• A novel hand-object graph for high-level representation
of robotic tool manipulation tasks.

• A new framework of imitation learning from a single ob-
servation based on graph-based forward dynamics model.

The rest of this article is organized as follows. Section
II describes the problem definition. Section III presents the
proposed framework for imitating garment folding tasks. Sec-
tion IV shows the experimental results. Section V gives final
conclusions.

For the convenience of readers, the main mathematical
variables used in the article are given in Tab. I.

II. PROBLEM FORMULATION

We formulate the task of robotic garment folding as a
Partially Observable Markov Decision Process (POMDP),
which can be specified by a tuple (S,A, T,O,B, r, γ), where
the state st ∈ S is unknown and can be denoted as the
configuration of robots and manipulated objects, and its cor-
responding observation is ot ∈ O. State transition model

1https://www.youtube.com/shorts/X-I2AnT5ajM
2https://www.youtube.com/watch?v=OwwrxIShuU8
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Fig. 1. Reformulation. The reformulated POMDP model after introducing
the graph structure, which is generated with fHoG and governed by fθdym .

TABLE I
MATHEMATICAL NOTATIONS

Notation Explanation

S The state space.
A The action space.
T The state transition model.
O The observation space.
B The observation function.
r The reward function.
γ The discount factor.
π(at|ot) The policy.
ξi The i-th expert demonstration.
o∗i The i-th observation-only expert demonstration.
D The observation-only expert demonstration.
G The hand-object graph (HoG).
fHoG(·) The HoG construction model.
fθdym

(·) The forward dynamics model.
OD(t) The t-step demonstration observation.
OR(t) The t-step robot observation.
R(t) The t-step robot action.
GR(t) The t-step HoG from robot observation.
GD(t) The t-step HoG from demonstration observation.
H The image height.
W The image width.
C The image channel.
Oimg The image observation space.
Ohand The hand related image observation space.

Oobj
The manipulated object-related image observa-
tion spaces.

Z The low-dimensional latent space.
fθdense The dense descriptor function.
Ii The i-th image.
Mi The corresponding model in i-th image.
m The pairwise pixel-level margin.
x = (x, y) The coordinate location in the image.
fC The correspondence function.
di The i-th dense descriptor.
V (G) The vertex set of a graph.
E(G) The edge set of a graph.
R The linking rule between different sets.
G′ The latent graph.
V ′ The latent vertex set.
E′ The latent edge set.
φv∗ The encoder function for latent vertices.
ϑe∗ The decoder function for latent edges.
fθE The message passing function for latent edges.
fθV The message passing function for latent vertices.



3

T (st+1 | st, at) characterizes the probability of a transition
from state st to state st+1 after executing action at ∈ A, and
observation function B(ot | st, at−1) represents the probability
that observation ot will be recorded after performing action
at−1 and landing in state st. r(st, at) ∈ R is a state reward
function, and γ ∈ [0, 1) is the discount factor.

Imitation learning is considered to be defined in the context
of a POMDP without an explicitly-defined reward function. It
aims to seek a policy π(at|ot) : O → A, that the agent should
take to behave like the expert demonstrations {ξ1, ξ2, . . .},
where each ξ corresponds to a demonstrated observation action
trajectory {(o0, a0), (o1, a1), · · · , (on, an)}. In our setting, the
imitator does not have access to the action sequences from the
human demonstration and only one demonstration is available,
so the resulting imitation learning problem is referred to as
one-shot imitation learning from observation. As such, our
imitation learning goal is to obtain an imitation policy from
a single observation-only demonstration {ξ}, where ξ is an
observation-only trajectory {(oi)}.

Given a single observation-only demonstration denoted as
{o∗1, o∗2, · · · , o∗n} ∈ D, we design a semantic structure com-
prising low-dimensional features extracted from the observa-
tion, which can visually describe the robotic manipulation
process in order to enhance the interpretability of the learned
policy. Specifically, the observation is partitioned into two
sections, which are robot-specific features and object-specific
features, respectively. Based on this insight, we introduce a
hand-object graph (HoG), G, which is composed of the robot
hand feature and the manipulated object feature. As such,
we reformulate the original POMDP as (S,A, T,O,B, r, γ,G)
(see Fig. 1), where gt ∈ G can be constructed with a
HoG model, fHoG(ot) from the observation ot, and governed
by the learned forward dynamics model characterized by
fθdym

(ghistory, at−1), where ghistory denotes a short history
of g. Therefore, the goal of our task can be reformulated as
π : G → A, where gt = fHoG(ot). In general, the specific
problems that we are interested in are as follows:

• How to generate low-dimensional features from raw
expert demonstration?

• How to form a valuable semantic structure to model the
robotic manipulation process?

• How to train a dynamics model over high-level structured
representations to accomplish our tasks?

III. PROPOSED FRAMEWORK

As depicted in Fig. 2, we now present our framework
of learning from observation for the garment folding task,
which is mainly composed of three modules, namely, hand-
object graph (HoG) construction, forward dynamics model,
and one-shot learning. A dense 3D reconstruction of the
folding board using an automatic style is designed to generate
the training data set for visual correspondences first. Followed
by a dense descriptor model, which is trained to capture the
visual correspondence relationships between different images.
Subsequently, combined with a pre-defined descriptor set, a
hand-object graph is constructed. Then, a forward dynamics
model is built with a graph neural network purely based on

HoGs over 2D images. Finally, one-shot imitation is imple-
mented using an MPC to optimize the robot action on 3D
HoG with aligned RGBD images.

Given a single garment folding demonstration denoted as
observations, {OD(1),OD(2), · · · ,OD(n)} ∈ D, considering
the current time step t, let the current observation for the
demonstrator and the robot be OD(t) and OR(t), respectively.
Our goal is to seek a robot action to reach OR(t + 1) by
imitating the next demonstration observation OD(t+1). With
our proposed framework, we can transform OR(t − λ : t) (a
robot observation history from t−λ to t) and OD(t+1) into
GR(t−λ : t) and GD(t+1) using hand-object graph construc-
tion module. Then, taking the forward dynamics model as the
constraint of the MPC, the robot action R(t) will be optimized
by computing the difference between resulting GR(t+1) and
GD(t+ 1) in a closed loop manner.

A. Dense Descriptor Model

In practice, we extract the hand-object graph from the
originally high-dimensional image observation space Oimg =
RH×W×C with a resolution of H ×W and channel number
of C. This Oimg can be divided into robot hand related
part Ohand and manipulated object related part Oobj . The
observation of the robot hand is measured by a self-designed
end-effector as described in Fig. 7, while for manipulated
object observation we need to use a visual model to process
and reduce into a low-dimensional space z ∈ Z . Specifically,
we aim to learn an imitation policy that can directly manipulate
objects in RGB images. Based on [24], we can learn a pixel-
level dense descriptor of the manipulated object and efficiently
detect the correspondences between RGB images.

To simplify, let I = oobj ∈ Oobj be an image with a
resolution of H × W and channel of C, and fθdense dense
descriptor without modifying its resolution. Our goal is to
learn a dense descriptor with D dimensions fθdense(I) :
RH×W×C → RH×W×D to assign a unique identifier to
each pixel. In order to expedite the training procedure, we
used the backbone of Fully Convolutional Networks [25] to
reapply calculated activations for overlapping pixels, thereby
effectively obtaining the dense descriptor. For the garment
folding task, we collect an N -frame image observation se-
quence, {(I1,M1), · · · , (IN ,MN )}, in which Mi is a global
correspondence model of the image Ii to maintain mappings
from pixel coordinates in the current frame to the correspond-
ing coordinates in other frames. By automatically collecting
RGB-D images with a robot arm, we can build a dense 3D
reconstruction of the working environment and then capture
pixel coordinate mappings and track them throughout the im-
ages [24]. Fig. 3 visualizes a sample trajectory of a particular
corresponding model through a folding task. Note that only the
corresponding model of the folding board is considered since
the garment will deform into numerous configurations, thus not
being able to provide a stable mapping. Therefore, we employ
pairwise labelling for correspondence pixel coordinates and
a contrastive loss [25] at the pairwise pixel level, which is
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Fig. 2. Overview. The proposed framework of tool-based imitation learning for garment folding task is composed of three modules, namely, a visual dense
descriptor-based hand-object graph model (marked in blue), a forward dynamics model built upon a graph neural network (marked in yellow), and a one-shot
imitation learning module (marked in green). Given a human demonstration of garment folding task OD and current robot observation OR(t), the hand-object
graph model constructs a high-level graph GD(t+ 1) based on OD(t+ 1), and graph GR(t) based on OR(t), followed by a forward dynamics model to
generate GR(t + 1). At last, the one-shot imitation will optimize the robot action until ending up with an acceptable graph difference between the human
demonstration and predicted robot action denoted by Diff(GD(t+ 1),GR(t+ 1)).

Fig. 3. Mappings. A visualization of the corresponding model from two
different perspectives. The color map shows the pixel-level mapping provided
by a dense 3D reconstruction of the working environment.

specified as follows:

L(fθdense
(Ix), fθdense

(I ′x′),M(Ix),M(I ′x′)) ={
∥fθdense

(Ix)− fθdense
(I ′x′)∥2 , if M(Ix) = M(I ′x′)

max (0,m− ∥fθdense
(Ix)− fθdense

(I ′x′)∥)2 , if not
(1)

where fθdense
(Ix) and fθdense

(I ′x′) are the dense descriptors
for image I located at x = (x, y) and image I ′ located at
x′ = (x′, y′), respectively. If coordinates x and x′ correspond
to the same 3D points located on the manipulated object, we
consider them as a positive pair and reduce the distance in the
feature space. If not, the contrastive loss will separate them
by at least a m margin.

With the built dense descriptor model, a set of K fixed
descriptors {di}Ki=1 is introduced to track a set of points
located on the manipulated object in image space. For each di,

it represents a vector in the D-dimensional descriptor space
produced by the built dense descriptor model fθdense(·) that
maps an RGB image RH×W×D to a dense vector RK×D. Let
fC denote the correspondence mapping function which takes
dense vectors of the full-resolution image fθdense(I) and the
descriptor set as input to track the pre-defined points:

z = fC(fθdense(I), {di}Ki=1) (2)

Note that the correspondence mapping function fC has a
consistent order of predefined points. In particular, fC :
RW×H×D × RK×D → RK×L, where L = 2 indicates the
predicted pixel coordinates (x, y), while L = 3 represents
their 3-dimensional coordinates.

B. Hand-object Graph Construction

Our starting point is the visual correspondence points that
are tracked. Based on these, we construct a high-level HoG.
Formally, a hand-object graph is a partial join graph denoted
as G = Ghand ∨ Gobj . Here, Ghand represents a hand graph
generated by a convex polygon, symbolizing the robotic end-
effector, and Gobj stands for a corresponding object graph,
signifying the folding board. The vertices and edges of G
are the union of those in Ghand and Gobj . In other words,
V (G) = V (Ghand) ∪ V (Gobj) and E(G) = E(Ghand) ∪
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Algorithm 1: hand-object graph Construction
Input: Observation at time step t, O(t)
Output: hand-object graph at time step t , G(t).

1 for each time step t do
2 V (Ghand) ← compute hand vertex set from o(t) ;
3 V (Gobject)← fC(fθdense

(Oimg(t)), {di}Ki=1) ;
4 Ghand ← Convex hull(V (Ghand)) ∪ Visolated ;
5 Gobject ← Convex hull(V (Gobject)) ∪ Visolated ;
6 Gfull ← compute Ghand ∨ Gobj with rule set R ;
7 G ← refine Gfull ;
8 return HoG graph moment G(t) ;

E(Gobj) ∪ {uv ← R : u ∈ V (Ghand), v ∈ V (Gobj)}.
Here, V (·) and E(·) represent the vertex set and edge set,
respectively. Crucially, there are additional edges in G that
connect vertices in Ghand and Gobj . These connections are
governed by a set of rules, denoted by R, and are expressed as
{uv ← R : u ∈ V (Ghand), v ∈ V (Gobj)}. Within each graph,
isolated points, if any, are connected to their nearest neighbor
until they reach the convex hull (for more details, please
refer to [26]). In the hand graph, Ghand, we designate one
point as the master vertex, which remains relatively stationary
to the robot flange, and the other points are designated as
slave vertices. The rule set R connects the master vertex in
the Ghand to each vertex in Gobj , thereby constructing their
spatiotemporal relationships. Once the HoG is constructed,
the relationships between different vertices are fixed until the
manipulation is completed. We use the term Graph Moment
to denote a specific spatio-temporal configuration of the HoG,
represented as G(t) at time step t. Consequently, the difference
between graph moments can be defined as the summation of
the length differences of the corresponding edges comprising
the HoGs:

Diff(G(a),G(b)) =
∑

ei∈E(G(a)),ej∈E(G(b))

∥(ei(a)− ej(b))∥22

(3)
where ei and ej are the edges from the edge set of G(a)
and G(b). With the HoG approach, we maintain the rela-
tive distance between nodes while disregarding the specific
coordinates of each node. This design choice enables the
learned manipulation policy to operate across different initial
configurations and perspectives, as the graph difference serves
as its loss function.

However, in practice, we don’t always require a full HoG,
denoted as Gfull. For instance, when folding the left side of
a garment, we may not need all four corner points. Instead,
we often utilize a well-refined sub-graph of Gfull, denoted
as (G ⊆ Gfull | E(G) ⊆ E(Gfull), V (G) ⊆ V (Gfull)), that
still accurately models the manipulation process. We refer
to this sub-graph as the Manipulation Equivalence of the
HoG. This concept is particularly useful in real-world robotic
manipulation tasks, where comprehensive observation of the
manipulated object may not always be feasible because of
various occlusions in the working environment.

The selection of the hand vertex set and the object vertex
set, and the refinement of the HoG, are task-specific consid-

erations. These aspects must take into account the specific
context of the manipulation task, which is a crucial element
of our research, and will be explored further in future work.

Referring to Fig. 4, the choice of the hand vertex set,
V (Ghand), is influenced by the design of the end-effector.
Suppose a bimanual manipulator is implemented for the task,
the size of V (Ghand) would effectively double. The object ver-
tex set, V (Gobject), could comprise various object landmarks,
with the selection depending on the inherent properties of the
manipulated object. For instance, rigid objects might require
fewer points, whereas soft objects might necessitate denser
point coverage.

One of the key advantages of this abstract visual structure
is its alignment with human imitation learning mechanisms,
making the learned policy for the manipulation process more
explainable. Additionally, this approach is independent of its
workspace, simplifying policy transfer learning.

In this work, as illustrated in Fig. 4, we consider four corner
points of the folding board and one end-effector point to con-
struct the hand-object manipulation graph. The corresponding
HoG construction is outlined in Alg. 1.

Fig. 4. Graph Modeling. Examples of Hand-object graph for manipulation
tasks. (Blue convex polygon: hand graph Ghand; green convex polygon: Gobj ;
Red point: the mater vertex; Pink line: connections governed by rule set R).

Fig. 5. Latent Graph. Conceptual representation of the encoder and decoder
of hand-object graph, where the reconstruction loss is defined in Equ. (5) the
original graph edges and vertices are transformed into a latent graph G′ to
simulate the forward dynamics, and then decoded back to the original space.

C. Forward Dynamics Model

Previous research [27] has shown the effectiveness of graph
neural network (GNN) for complex dynamics learning. Simi-
larly, we apply GNN to simulate the forward dynamics of the
hand-object graph for the manipulation task. We define the
dynamics model fθgraph(·) to describe the interactions between
the robot hand and the manipulated object as follows:

Ġ(t) = fθgraph(R(t),G(t− λ : t)) (4)
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where it takes the partial recent history of the hand-object
graph G(t−λ : t) and robot velocityR(t). Without loss of gen-
erality, R(t) can denote multiple manipulators as {Ri(t)}Ωi=1,
in which each Ri(t) ∈ R1×6 represents the velocity of the end-
effector for the i-th manipulator, and Ω is the total number of
manipulators. The Graph Network Simulator (GNS) [28] is a
pivotal part of our method. It is employed to characterize the
dynamics of the Hand-Object Graph (HoG). The GNS consists
of three main components: the encoder, the processor, and
the decoder. Each of these components plays a distinct role
in the overall process: 1) Encoder: The encoder’s function
is to reduce the original high-dimensional space into a low-
dimensional latent graph space, denoted as (G′ = (V ′, E′)).
As illustrated in Fig. 5, we train a graph edge encoder and
a graph vertex encoder independently. The loss function for
each encoder is defined based on its reconstruction error, as
given:

φe∗, ϑe∗ = arg min
φe,ϑe

∥E − (φe ◦ ϑe) (E)∥2

φv∗, ϑv∗ = arg min
φv,ϑv

∥V − (φv ◦ ϑv) (V )∥2
(5)

where φv∗ : V → ZV , φe∗ : E → ZE are the encoders of the
HoG edges and vertices, and ϑv∗ : ZV → V, ϑe∗ : ZE → E
are the corresponding decoders. 2) Processor: The processor
is used to compute the interactions between latent vertices and
latent edges, which allows us to simulate the dynamics of the
HoGs. As depicted in Fig. 6, the dynamics of the latent graph
in the (ℓ+1)-th message passing block can be computed using
the following equation:

ℓ+1e′i,j = fθE
(
ℓv′i,

ℓe′i,j ,
ℓv′j

)
ℓ+1v′i = fθV

ℓv′i,
∑
j

ℓe′i,j

 (6)

In this equation, ℓ+1e′i,j and ℓ+1v′i are the latent edge and
vertex features in the (ℓ+1)-th message processor. fθE and fθV
represent the latent graph edge network and vertex network,
respectively. 3) Decoder: The final component of the GNS is
the decoder. After the processor has computed the interactions
between the latent vertices and edges, the decoders ϑV and ϑE

transform the latent graph edge and vertex features back into
the original space. This transformation yields the prediction
Ġ(t), which is maintained with a fixed weight after training.

By breaking down the GNS into these three components,
we can more effectively understand and control the dynamics
of the HoG, enabling us to improve the manipulation policy’s
performance.

D. One-shot Imitation Learning

The use of a folding board to manipulate garments re-
quires precise velocity control. Excessively high velocities can
displace the entire garment, while overly low velocities lead
to uneven folds. To enable accurate velocity control learned
from human demonstrations, we employed model predictive

Fig. 6. Message Passing. Conceptual representation of the GNN message
passing block. In each block, the interaction from one graph vertex to another
is passed through the graph edge.

Algorithm 2: One-shot Imitation Learning with HoG
Input: Graph dynamics model, fθgraph ; Expert

Demonstration, {o∗1, o∗2, · · · , o∗n} ∈ ξ; Current
observation, ot; Robot velocity range, ϵ.

Output: A close-loop imitation policy π.
1 Initialize R, ε ;
2 for each time step t do
3 G(t)← Compute imitation HoG based on ot ;
4 G(t+ 1)∗ ← Compute corresponding

demonstration HoG based on o∗t+1 ;
5 R(t)← Solve the optimization in Equ. (7);
6 ot+1 ← Execute R(t) and obtain the new

observation ;

control (MPC) with a closed-loop controller that optimizes
end-effector velocity R(t) over a finite time horizon µ:

min
R(1:µ)

µ+1∑
t=1

Diff(G(t),G(t)∗)

s.t. G(t+ 1) = G(t) + Ġ(t)δt
Ġ(t) = fθgraph(R(t),G(t− λ : t))

∥R(t)∥ ≤ ϵ

t = 1, 2, . . . , µ

(7)

where the objective function is defined by minimizing the HoG
difference defined in Equ. (3) and the constraints comprise
the learned forward dynamics model and the robot’s velocity
∥R(t)∥ ≤ ε, where δt is the model’s sampling time. The
entire procedure is presented in Alg. 2. During the imitating
folding task, the optimal robot motions R(t) are iteratively
solved by the MPC model and then transmitted to the robot
for execution. The optimization is solved using a primal-dual
interior-point linear search algorithm implemented by IPOPT
[29]. As [30] has shown that local convergence is ensured, we
primarily conducted experiments to empirically demonstrate
the effectiveness.

IV. EXPERIMENTS

In this section, we outline the experimental setup for
learning garment folding tasks, followed by implementation
details of our visual dense descriptor model, hand-object graph



7

Realsense-L515

End-effector

UR-5

T-shirt

Folding Board

Realsense-435i Realsense-435i

OnRobot RG2

+

=

𝑥 𝑦
𝑧

𝑧
𝑥

𝑦

(a) (b) (c)

(d)
UR-5

Fig. 7. Experimental Setups. (a) and (b) show experimental set-ups with
a folding board and without a folding board. (c) and (d) present the custom-
made end-effector for imitating the garment folding task with a standard
folding board.

modeling, and dynamics learning components. Finally, we
compare our one-shot imitation approach to other imitation
and fabric manipulation methods. As shown in Fig. 8, we
aim to imitate three T-shirt folding tasks: left folding, right
folding, and middle folding. For each task, we define four
stages, namely, approaching: The end-effector moves toward
the first contact point to insert the bottom circle board between
the left side of the shirt and the workbench; lifting: The end-
effector lifts to create enough space for rotating the garment;
rotating: The end-effector rotates to align the folding board
plane with the appropriate section of the garment; pushing:
The end-effector pushes the corresponding section at a certain
speed to complete the fold. To highlight the one-shot learning
capabilities of our proposed HoG dynamics-based approach,
we provide one single expert demonstration video for each
task. To examine the effectiveness and robustness of our
approach, we also apply the imitation policy to the problem
of different initial configurations, such as different rotations,
garments, and perspectives.

1 2

3

Fig. 8. Folding Steps. The first row shows three garment folding tasks
with a folding board, which is composed of left folding, right folding and
mid-folding. The second row displays the four procedures for each folding
process, namely, approaching, lifting, rotating and pushing.

A. Experiment Setup

Fig. 7(a) shows the experiment setup for our approach,
where a RealSense RGB-D camera (L-515) is used to observe
the garment folding process, and a UR-5 robot interacts with
a black folding board with a custom-made end-effector, while
7(b) shows the experiment setup with selected solutions for

(a) (b)

Fig. 9. Initial Configurations. (a) presents the four different initial
configurations: (i) 0◦ rotation angle; (ii) −30◦ rotation angle; (iii) +30◦

rotation angle; (iv) View-changed working space for tool-based approaches
(TCN, NoHoG and our full approach) in T-shirt and shorts folding task. (b)
shows the configurations for non-tool-based imitation approaches (GSP and
FFN).

comparing with our approach, where the folding board is
removed and instead a robot gripper is used to pick and place
garments. Both setups employ a RealSense RGB-D camera
D435i to measure folding performance according to predefined
metrics. We assume that the garment is initially laid out
smoothly and flatly in the same place in the folder for each
imitation episode. To precisely estimate the end-effector pose
in our experiments, a modularized end-effector is designed
(see Fig. 7(c)) which consists of a cube labelled with AR
markers to detect its pose, a circular flake to interact with the
black folding board (see Fig. 7(d)), and a stick to link them
all. We calibrate the transformations from AR markers to the
bottom circular plate’s center. With such transformations, it is
feasible to determine the position and orientation of the lower
circular plate across the demonstrator’s and imitator’s work-
spaces, even when the assistive folder conceals the end-effector
during the manipulation process.

B. Dense Descriptor Model

To construct the visual correspondence model, we need to
collect images from different viewpoints based on a dense
3D reconstruction of the folding board. We place the folding
board on the table at the front of the manipulator and scan it
with an RGBD camera (RealSense D435i) mounted in a hand-
eye style at 30Hz FPS from different viewpoints. This process
takes about 60 seconds and saves approximately 1800 RGBD
images. Based on the camera extrinsic calibration and forward
kinematics of the robot, we acquire a global transformation of
the captured RGBD images with respect to the robot base to
obtain a dense 3D reconstruction. Next, we obtain new depth
images by rendering the 3D folding board reconstruction back
to each recorded camera frame using the estimated camera
poses, which produces high-quality and globally consistent
depth images to keep the pixel-level correspondence across
RGB images for dense descriptor training. Since we only focus
on the folding board to construct the following HoG, so the
original RGB image will be converted into a mask RGB image
by color filtering to accelerate the training process. Finally,
around 7500 RGB images in the size of 640 × 480 are saved
for dense descriptor training.

To train the dense descriptor model, a pretrained (on Im-
ageNet) 34-layer, stride-8 ResNet is adopted, and then we
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Fig. 10. Results. Performance of the the dense descriptor model, the forward dynamics model, and the process of imitating from observation of garment
folding task. (a) and (b) present the ground truth and prediction of the dense descriptor model and the forward dynamics model; (c) and (d) show the
corresponding error of the two models. (e)-(g) show successful imitation episodes for left-folding, right folding and mid-folding tasks, respectively.

bilinearly upsample to obtain an image with the original
resolution. Networks are trained on a single Nvidia 1080 Ti
using the same optimizer parameters (Adam optimizer with
a 1e − 4 weight decay) for 4,000 steps. In detail, each step
requires approximately 0.34 seconds, i.e. approximately 22
minutes and the learning rate is set to 1e − 5 and drops by
0.8 per 250 iterations. Fig. 10(a) shows the dense descriptor
for the four corner points of the folding board, where the
first row presents the prediction results (red points and white
lines) and ground truth (green points and blue lines), and the
second row visualizes the corresponding heatmap of the dense
descriptor. In addition, we record another video to measure its
error during the manipulation process and Fig. 10(c) shows
the corresponding pixel coordinate error, which is defined as
∥xpred − xtrue∥2. The most pixel coordinate error is below
2 pixels through the entire manipulation process, which is
acceptable for our experiment considering that we always use
the stationary corner points of the folder and the maximum
3D error is within 4 mm.

C. Graph Dynamics Model

The state of HoG is approximated by the visual corre-
spondence model and the detected end-effector. We selected
two corner points on the other side of the folding board. To
interact with the folding board safely and validly, we design a
rectangular bounding box in the 3D working space to ensure
that the end-effector will not collide with the table surface.
In addition, a predefined trajectory using explicit geometrical

TABLE II
PARAMETERS OF THE HOG FORWARD DYNAMICS MODEL

Dynamics Model Encoder Parameters
Number of Hidden Layers 2
Size of Hidden Layers 64
Activation ReLU

Dynamics Model Decoder Parameters
Number of Hidden Layers 2
Size of Hidden Layers 64
Activation ReLU

Dynamics Model Processor Parameters
Number of Hidden Layers 2
Size of Hidden Layers 64
Activation ReLU
Number of Message Passing (k) 10

Dynamics Model Training Parameters
Batch Size 1
Learning Rate 10−4 to 10−6

MPC Parameters
Horizon of MPC (µ) 5
Sampling time of Dynamics (δt) 0.1s
optimizer IPOPT

rule is executed when the end-effector is near the folding
board to enable a successful inserting below the folder, so
that the following interactions are valid. The folding board is
initialized with a default configuration, and for each folding
task we randomly execute the velocity commands for the
end-effector (the maximum is 0.2m/s for x, y, and z-axis)
to obtain 50 HoG-action trajectories {G(t),R(t)}, in which



9

each trajectory has 100 transition steps and for each transition
the 3D HoG configuration and the robot end-effector velocity
are saved. By doing so, we form a data-set with 15,000
transitions. The network structure and MPC parameters are
summarized in Table II. Similarly, we execute a predefined
and unseen right folding trajectory to collect 400 HoG-velocity
transitions to test the trained GNN dynamics model, and
10(b) and (d) show the performance and corresponding error,
respectively. Finally, with the learned graph dynamics model,
Fig. 10 (e)-(g) show the successful imitation episodes for
left-folding, right-folding and mid-folding tasks, respectively.
For model predictive control, we set the sampling time at
0.1 seconds. The total MPC duration depends on hand-object
graph construction time (primarily from visual correspondence
recognition), computation time for differences between the
current and predicted graph states, optimization solving time
using the learned forward dynamics model, and execution time
for commands sent to the UR robot. We selected an MPC
horizon length of 5 time steps based primarily on satisfying
real-time constraints, given the complexity of optimization
using our learning-based model at each control step. Longer
horizons risked delays that could interfere with responsive
control of the system. A horizon of H=5 was found to balance
cost minimization over a reasonably significant prediction
period with sufficiently fast performance for our application.

D. Comparison and Discussion

We compare our approach to three advanced techniques that
are widely recognized in respective field: (i) goal-conditioned
skill policy (GSP) [32], which is a well-known method for
learning manipulation policies in imitation learning tasks by
introduceing a goal-conditioned policy that effectively enables
complex manipulation tasks; (ii) Fabricflownet (FFN) [33],
which is widely recognized for its innovative approach to
learning a goal-conditioned flow-based policy for fabric ma-
nipulations; (iii) time-contrastive networks (TCN) [31], which
is a pioneering approach to robotic imitation learning that
employs a self-supervised paradigm and has been instrumental
in the evolution of the field. To elucidate the individual
contributions of each component within our proposed method,
we have conducted two ablation analyses. The first variant,
termed “NoHoG”, eliminates the Hand-Object Graph (HoG)
representations. In this case, we train a naive forward dynamics
model (based on the design used in the Goal-Conditioned
Skill Policy (GSP)) that directly utilizes RGB-D images as
its input. The second variant, “NoGDM”, retains the HoG
representation but replaces the HoG dynamics model with a
conventional forward dynamics model. These analyses should
provide insight into the distinct roles and impacts of the HoG
and GDM within our approach.

As shown in Fig. 7(b), a non-tool-based experimental setup
is used to evaluate the GSP and FFN (due to the pick-and-
place action space) on folding tasks, which can be achieved
with six actions. While the TCN, NoHoG, NoGDM, and our
full approach are evaluated in a tool-based experimental setup
(see Fig. 7(a)) for folding tasks, which can be achieved in
three folding steps (see Fig. 11(a) and (b) for details).

Similar to previous work [33], we evaluate the folding
task performance quantitatively by using Mean Intersection
over Union (MIoU) between the garment masks achieved by
different approaches and a human demonstrator. Since the
MIoU metric only considers the intersection between two
masked garment boundaries, to measure the surface flatness of
folded garments achieved by different approaches and a human
demonstrator, we select the Chamfer distance error [34] as
another performance metric to compare extracted point clouds
of the garment surface captured by the top-down depth camera.
By using the farthest point sampling algorithm proposed in
PointNet++ [34], the point clouds can be downsampled into a
fixed resolution, which indicates that the total number of points
in the point clouds is the same. Consider two downsampled
point clouds Pi and Pj with N points in each cloud, the total
Chamfer distance error is defined as:

D (Pi,Pj) =
∑
x∈Pi

min
y∈Pj

∥x− y∥22 +
∑
y∈Pj

min
x∈Pi

∥x− y∥22 (8)

where x ∈ Pi, y ∈ Pj . In our experiments, we set N = 10000
and the mean Chamfer distance error as D (Pi,Pj) /N . To
validate the effectiveness and robustness of our approach, as
shown in Fig. 9 each folding task is performed under four
different initial configurations: (i) 0◦ rotation angle; (ii) −30◦
rotation angle; (iii) +30◦ rotation angle; (iv) View-changed
working space. Note that the GSP and FFN are not considered
in view-changed configuration since they are trained under a
fixed top-down view. For each configuration, a policy needs
to be performed on two different garments (T-shirt and shorts)
30 times. For each policy, during training, we only provide
T-shirt expert demonstration data. An episode is considered
successful folding only when the MIoU≥ 0.5 and the Chamfer
distance ≤ 15.00, which are empirically set based on a large
number of tests. During experiments, we found that the folding
performance in initial configurations of −30◦ rotation angle
and +30◦ rotation angle are very similar, so we report them
in a combined manner with a new item named Rotation ±30◦
in the following quantitative results.

Experimental quantitative results can be found in Table
III, IV and V. Our full approach achieves the highest MIoU
and lowest mean distance error over all tasks and shows a
larger improvement over the baselines. Fig. 11 (c)-(h) show
representative qualitative results under different initial config-
urations using different approaches. As can be observed, even
when the garment’s size, material, pose, and camera view are
different from those of the demonstration process, our HoG-
based approach performs all folding tasks successfully, while
the baselines fail to complete most of the tasks. The high
success rate of our proposed approach is mainly attributed
to two aspects. First, introducing the folding board in the
garment folding tasks is able to effectively constrain garment
deformation into a reduced configuration space, thus better
handling the complex dynamics of garments compared with
non-tool-based approaches (GSP and FFN). Second, our full
approach employs view-invariant spatio-temporal features to
construct the dynamics model, thereby having the ability to
handle folding tasks in various initial configurations, espe-
cially when the view changes (see Fig. 11 (e) and (h)). In
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Fig. 11. Qualitative Results in T-Shirt and Shorts Folding Experiments. (a) and (b) show the sub-goal inputs for tool-based and non-tool-based baselines
compared with our proposed approach, and the red rectangles represent the sub-goals where we will compute the task performance metrics (MIoU and Chamfer
distance error). Three baseline approaches (GSP, FFN and TCN) and one ablation (NoHoG) are compared with our full approach in four different initial
configurations for T-shirt folding tasks: (c) 0◦ rotation angle; (d) ±30◦ rotation angle; (e) View-changed folding. To evaluate the generalization ability, we
also perform the folding tasks on unseen shorts with different approaches: (f) 0◦ rotation angle; (g) ±30◦ rotation angle; (h) View-changed folding. Note
that since the performances of −30◦ rotation angle and +30◦ rotation angle are similar, only +30◦ rotation angle is reported in this figure.

TABLE III
MEAN IOU FOR FOLDING T-SHIRT AND SHORTS BY DIFFERENT METHODS

Method T-shirt Shorts

Rotation 0◦ Rotation ±30◦ View Changed Rotation 0◦ Rotation ±30◦ View Changed

GSP [12] 0.42± 0.13 0.33± 0.21 / 0.14± 0.11 0.07± 0.04 /
FFN [11] 0.51± 0.24 0.43± 0.27 / 0.49± 0.28 0.35± 0.27 /
TCN [31] 0.39± 0.24 0.36± 0.23 0.42± 0.26 0.29± 0.24 0.31± 0.21 0.26± 0.25
NoHoG 0.49± 0.12 0.52± 0.16 0.41± 0.11 0.44± 0.19 0.37± 0.21 0.43± 0.22
NoGDM 0.51± 0.17 0.33± 0.26 0.24± 0.27 0.47± 0.23 0.29± 0.26 0.17± 0.26
HoG (Ours) 0.88± 0.03 0.83± 0.05 0.81± 0.07 0.75± 0.10 0.73± 0.09 0.72± 0.13

TABLE IV
MEAN CHAMFER DISTANCE ERROR FOR FOLDING T-SHIRT AND SHORTS BY DIFFERENT METHODS

Method T-shirt Shorts

Rotation 0◦ Rotation ±30◦ View Changed Rotation 0◦ Rotation ±30◦ View Changed

GSP [12] 23.79± 12.74 24.71± 14.30 / 65.48± 31.81 72.54± 37.45 /
FFN [11] 16.87± 9.64 19.66± 10.67 / 23.10± 19.53 25.25± 21.63 /
TCN [31] 21.09± 9.22 24.89± 15.67 15.68± 6.49 28.12± 18.21 33.75± 19.20 38.66± 24.80
NoHoG 15.54± 7.32 18.77± 8.70 19.24± 9.26 19.18± 15.01 28.12± 16.63 34.07± 20.95
NoGDM 16.59± 9.80 24.84± 17.81 27.79± 18.63 17.81± 13.33 30.12± 22.88 34.47± 20.12
HoG (Ours) 11.64± 3.54 9.68± 4.90 10.60± 4.48 16.47± 7.30 15.55± 8.92 16.04± 7.75
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TABLE V
SUCCESS RATE FOR FOLDING T-SHIRT AND SHORTS BY DIFFERENT METHODS

Method T-shirt Shorts

Rotation 0◦ Rotation ±30◦ View Changed Total Rotation 0◦ Rotation ±30◦ View Changed Total

GSP [12] 9/30 23/60 / 35.56% 0/30 0/60 / 0.00%
FFN [11] 14/30 33/60 / 52.22% 12/30 26/60 / 42.23%
TCN [31] 19/30 32/60 17/30 56.67% 7/30 6/60 8/30 17.50%
NoHoG 21/30 43/60 10/30 61.67% 19/30 31/60 7/30 47.50%
NoGDM 23/30 22/60 6/30 42.50% 20/30 21/60 4/30 37.50%
HoG (Ours) 27/30 56/60 26/30 90.83% 23/30 52/60 22/30 80.83%

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12. Failure Case. (a)-(d) show the failure cases of error insertion, error
rotation, small velocity and small velocity in our approach. (e)-(h) present
the failure cases of unsuccessful picking, error picking position, one-layer
picking, and multi-layer picking in FFN.

addition, our HoG-based approach can also generalize to the
shorts, which is unseen during training and demonstrations.
By capturing view-invariant spatiotemporal features on the
folding board, the proposed approach can understand high-
level dynamics information about a multi-step task. Thus, our
approach is robust to garment pose, camera view, and even
garment type variations in the low-level pixel space.

GSP and TCN perform poorly on the shorts compared with
their performance on the T-shirt because they are both built
upon feature representation extracted from pure RGB images,
which lacks the ability to transfer learned policies onto unseen
shorts. However, FFN performs better than GSP on both the
T-shirt and shorts, which is because FFN only uses depth
images for both training and implementing processes, which
can transfer the learned policy. A certain portion of the failure
cases of FFN involve grasping failures as it uses pick-and-
place action primitives (see Fig. 12 (e)-(h) for details).

For the ablation studies, the “NoHoG” ablation validates
the significance of leveraging graph structures, which are
particularly suitable for representing complex interactions be-
tween different components of a robotic system, such as the
interactions between a robot’s hand, the tool, and the garment
in our task. This is more efficient compared to conventional
visual perception models, which often have to process high-
dimensional inputs such as raw sensor images; While the
“NoGDM” ablation validates the importance of implementing
graph dynamics model, which can explicitly model and reason

about the relationships between different nodes (e.g., the hand,
tool) during our complex interactions. Besides, the learned
graph dynamics can potentially be transferred to other similar
tasks, provided they can be represented with a similar graph
structure. This transferability is less common in traditional
forward dynamics models, especially for our view-changed
initial configurations.

E. Limitations

While our research demonstrates substantial potential in
automating the garment folding process, there are several areas
where limitations exist. The effectiveness of our approach is
tied to the quality of the demonstration provided. Unclear
or ambiguous demonstrations can significantly impact the
performance of the learned policy, requiring the user to possess
a certain level of proficiency in garment folding. Additionally,
our method currently faces challenges when dealing with un-
usually structured or complex garments, which may necessitate
more advanced representations or learning strategies. Finally,
the robustness of our method to variations in the properties of
tools and fabrics is another area of concern (see the failure
cases in Fig. 12).

V. CONCLUSION

In this paper, we propose a novel framework of imitation
learning from a single observation to solve tool-based robotic
garment folding tasks by using a graph-based dynamics model.
With a dense descriptor, we encode the demonstration obser-
vation into a high-level hand-object graph for characterizing
the interactions between the assistive tool and robots. After
that, we construct a forward dynamics model with graph
neural networks aiming at simulating the complex dynamics
of the HoGs. Finally, robotic garment folding is solved with
a model predictive controller under the paradigm of imitation
learning from a single observation. The effectiveness of the
proposed framework has been validated by qualitative and
quantitative experimental results conducted on a real robotic
platform. We aim to enhance the quality of demonstrations,
potentially integrating multiple perspectives or employing ad-
ditional information during the demonstration phase to ensure
clarity. In terms of complexity, the ambition is to adapt
our method to handle more intricate garments and folding
tasks. This might necessitate the creation of advanced graph
representations and the introduction of more complex learning
algorithms. Increasing the method’s robustness to variations in
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tool and fabric properties is another priority. This could involve
encoding these properties into our graph representation or
diversifying our training data to encompass a broader spectrum
of tool and fabric combinations. Furthermore, we plan to
explore the potential of transfer learning. Given the graph-
based nature of our method, it appears particularly well-suited
to scenarios where knowledge gained from one task can be
effectively applied to others.
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