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Abstract—Accurately recognizing the structural regions of
targeted objects is crucial for successful manipulation. In this
study, we concentrate on the task of hanging crumpled garments
on a rack, a common scenario in household environments. This
context presents two primary challenges: (1) perceiving and
grasping the structural regions of garments that exhibit severe
deformations and self-occlusions; (2) adjusting the configuration
of garments to fit the supporting components of the rack.
To address these challenges, we propose a confidence-guided
grasping strategy that actively seeks garment collars through
handovers between dual robotic arms. In particular, we develop
an autonomous data collection procedure in real-world settings
to train the collar detection network. The exact grasping pose
is determined through depth-aware contour extraction, and
its success is evaluated based on a specially designed metric.
Furthermore, we formulate the hanging task as one-shot imitation
learning with an egocentric view. To precisely align the collar
with the supporting item, we propose a two-layered hanging
strategy that involves coarse approaching followed by fine trans-
formation. We perform comprehensive experiments and show
that our framework notably enhances the success rate compared
to existing methods.

Index Terms—Deformable object manipulation, Hanging gar-
ments, Active perception, One-shot imitation learning

I. INTRODUCTION

GARMENTS are ubiquitous in our daily lives and have
a wide range of applications [1], including folding [2],

flattening [3] and assistive dressing [4]. In comparison to rigid
objects, garments present significantly greater challenges for
manipulation due to their extensive infinite state and action
spaces, as well as their complex kinematics and dynamics [5].

Although there have been substantial body of research
on garment manipulation [2]–[4], most studies make strong
assumptions about task specifications. For instance, [4], [6],
[7] assume an ideal pre-grasping configuration at the outset,
which is maintained throughout the entire process. Similarly,
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[8], [9] focus on nearly flattened garments where keypoints are
consistently visible. However, garments often undergo severe
self-occlusions due to their deformable nature, complicating
accurate state estimation. After grasping a garment, hanging
it on a rack is a common scenario in household settings.
Current methods [8], [10] assume prior knowledge of the
rack’s positions, which limits their practical applications. To
enhance practicality, we aims to address the challenge of
hanging a crumpled garment on a rack without relying on
strong assumptions about either the garment or the rack. This
task is complex, as the robot must reason about the structural
regions of the environment (garments and racks) and determine
the appropriate actions (grasping pose and hanging trajectory)
while remaining robust to variations in their configurations.

In this work, we introduce a novel system for robust garment
manipulation, utilizing eye-on-hand cameras integrated with
dual-arm end-effectors for active perception. First, handovers
between dual arms are employed to actively locate the collar of
garments with a learned detection model, thereby facilitating
a confidence-guided grasping strategy. Second, a two-layered
active sensing strategy is implemented to adjust the config-
uration of the grasped garment for alignment with the rack,
allowing for the reproduction of the demonstrated interaction
trajectory afterward. Extensive real-world experiments validate
the robustness and superiority of our methods.

Perceptual feedback is essential for manipulating garments
due to their deformable characteristics [11]. Previous works
detect specific garment patterns such as wrinkles [12] and
corners [13]), for various applications. However, they are
task-specific and lack generality. Additionally, [14] explicitly
reason about occlusions to reconstruct crumpled garments’
meshes. Meanwhile, [15], [16] employ a strategy of lifting the
garment prior to recognizing, utilizing gravitational force to
aid in untangling. However, challenges arise concerning the ac-
quisition of high-quality data in training and the computational
complexity in test-time optimization. We employ a similar
strategy to alleviate the burden in structural recognition, but
we focus on detecting the collar to facilitate effective grasping
and hanging.

The manipulation of garments is heavily influenced by their
initial configurations and the contextual factors of the scenario
[10]. Studies [17], [18] identify predefined grasping points
of garments hung on a rack with supervised learning, whose
deformations are relatively straightforward. Additionally, [19]
extracts edges and corners from crumpled fabrics to develop
a grasping policy. Nevertheless, the structure of fabrics is
considerably simpler than that of garments. While [10] at-
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Fig. 1. The complete pipeline for the garment hanging task. Grasping: The dual-arm robot lifts the garment and locates its collar for grasping. Hanging:
The robotic arm that has grasped the garment adjusts its pose to enable successful hanging.

tempts to grasp a garment’s collar and hang it on a rack, they
assume the collar is initially visible, which is not always true.
In contrast, our work does not make any assumptions about
garment configurations, thus providing a more comprehensive
framework for garment manipulation.

Equipping robots with the ability to hang objects on support-
ing structures has applications across various domains [20],
[21]. While the studies [20], [21] focus on hanging various
grasped objects on diverse supports, they depend on a third-
person perspective for perception in constrained scenarios.
Previous work [10] and [8] address the garment hanging task
using a single pick-and-place primitive, assuming the rack’s
position is known, which greatly restricts the applicability. In
contrast, we flexibly adjust the garment’s configuration based
on an egocentric view to fit the rack, requiring only a rough
estimation of its position.

Recently, mounting cameras on robots’ wrists has gain
popularity, as it allows to actively obtain multiple perspectives
of the target object [22]. [23] presents a keypoint-based visual
servoing method for fine robotic manipulation. Meanwhile,
[24] utilizes vision foundation models to extract corresponding
keypoints and apply registration to adjust end-effector’s pose.
However, both approaches are constrained to planar scenarios
with limited degrees of freedom. To facilitate successful hang-
ing in three-dimensional environments, it is crucial to detect
contact points between objects and supports to determine their
appropriate relative poses [20].

The work in [10] closely resembles our work; however
it has two significant limitations: (1) it assumes that the
collar of garment is initially visible; (2) its hanging trajectory
is predefined. To enhance adaptability, our comprehensive
algorithm exclusively utilizes egocentric views to identify the
structural regions of both the garments and the supporting rack.
The original contributions of this work are as follows:

• We propose a novel pipeline for garment manipulation
using dual arms equipped with eye-in-hand cameras.

• We introduce a confidence-guided grasping strategy that
actively searches for garments’ collars.

• We propose a two-layered hanging strategy for precise
alignment between the garment’s collar and the rack.

• We conduct an experimental study to validate our solution
for hanging garments in crumpled configurations.

The remainder of this paper is organized as follows. Sec. II
presents the methods, which include the confidence-guided
grasping strategy and the two-layered hanging approach. Sec.
III reports the results, while Sec. IV gives the conclusions.

II. METHODS

Algorithm 1: Garment Hanging

1 /* Grasping */
2 Lift the garment
3 while True do
4 Capture the image set {ID}Ni=1

5 Detect the collar fD({Di}Ni=1)→ {Bi, Si}Ni=1

6 if the collar is detected then
7 Rotate to the I − th angle ←− Eq. 2
8 Compute the grasping pose ←− Eq. 3-8
9 Execute the grasping

10 if the collar is grasped ←− Eq. 9 then
11 break
12 Handover

13 /* Hanging */
14 Initialize the hanging phase Xinit ←− Eq. 10
15 Obtain the coarse displacement ∆P ←− Eq. 11
16 Detect the keypoints {pk}2k=1 ←− Eq. 11
17 Tune the pose of the camera R, t←− Eq. 13
18 Reproduce the interaction trajectory

In this section, we outline the details of our methodology.
Fig. 1 depicts the complete pipeline of our system, designed
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to hang a crumpled garment on a rack. The pipeline, detailed
in Alg. 1, is divided into two phases, grasping and hanging.

Grasping: Initially, one arm lifts the crumpled garment
with a random pick point. We designate the arm grasping
the garment as the master arm AM and the other as the
slave arm AS . The wrist camera on the slave arm AS then
captures multiple images while the master arm AM rotates,
allowing for the collection of information about the garment
from various angles. Next, the collar detection network scans
these images to locate the collar. The master arm AM rotates
to the angle with the highest confidence, and the slave arm AS

re-senses to determine the optimal grasping pose. The phase
concludes if our close-loop evaluation confirms a successful
grasp; otherwise, the roles of the dual arms are switched to
initiate another search for the collar.

Hanging. In accordance with the principle outlined in [25],
the hanging task is formulated as achieving a user-defined pose
relative to the object of interest, followed by an open-loop
replay of the demonstrated end-effector trajectory. To adapt the
collar with the rack in three-dimensional space, we propose
a two-layered strategy to achieve the desired pose. First, we
estimate a displacement to adjust the camera’s viewpoint,
improving the clarity of crucial information regarding the
rack. Second, we identify the keypoints of the supporting
items and calculate a fine-grained transformation to attain the
desired relative pose. Finally, the end-effector reproduce the
demonstrated interaction trajectory.

In the following, we first outline the details of the
confidence-guided grasping strategy, which encompasses the
autonomous data collection procedure in real-world settings,
the selection of optimal grasping angles, and the determi-
nation and evaluation of depth-aware grasping pose. Next,
we describe how we leverage simulation data to learn the
coarse approaching and fine-grained transformation required
to achieve the desired pose.

A. Confidence-guided Grasping

A large dataset is crucial for training an effective and
robust deep neural network. One challenge in learning-based
manipulation is data acquisition. Traditional methods for data
collection demand significant human effort to alter envi-
ronmental configurations and carry out manual annotations
[10]. While there is an growing trend toward generating
synthetic images to enhance hybrid datasets [17], inaccuracies
in physical engines can create a simulation-to-reality gap [26],
especially for crumpled garments.

We propose a data collection paradigm that employs han-
dovers between dual robotic arms to capture a variety of gar-
ment configurations. Specifically, the master arm AM adjusts
to a random angle while the slave arm AS selects a random
point on the garment to grasp. This handover process continues
until the data collection procedure is complete. Following the
methodology described in [19], our data acquisition utilizes a
template polo shirt, with the collar distinctly separated from
the main body. Fig. 2(a) illustrates the process, where the
garment mask MG is integrated with the depth image D
to eliminate irrelevant background information. The collar

Fig. 2. The details of the confidence-guided grasping strategy. (a) The mask
of the garment and its corresponding collar are extracted based on color
information. The masked depth image of the garment serves as the input, while
the bounding box of the collar is the output of the detection network. (b) As
the master arm rotates, the camera capture several images of the garment from
different angles. Among the predictions, the angle with highest confidence is
selected for grasping. (c) The masked depth image is cropped according to
the detection, allowing for the depth-aware collar contour extraction. Finally,
the position and the orientation of the grasp are determined.

maskMC is autonomously generated using a color extraction
method. The resulting masked depth image D and the collar
maskMC are then fed into the Yolo-v8 [27] model for object
detection.

During deployment, the trained Yolo model fD receives a
masked depth image D as input and produces the correspond-
ing bounding box Bi, along with its confidence score Si.

fD(Di)→ (Bi, Si) (1)

At each step, the camera mounted on the slave arm captures
N images of the garment, forming a set represented as
{Di}Ni=1, as illustrated in Fig. 2(b). The detection network
then processes these images as input and outputs the de-
tected bounding boxes and their associated scores, denoted
as fD({Di}Ni=1)→ {Bi, Si}Ni=1. From the results, we choose
the angle with the highest confidence as the optimal angle for
the slave arm AS to determine the grasping pose.

I = argmax{Si}Ni=1 (2)

The master arm then move to the I − th angle, and the
camera mounted on the slave arm senses the environment
again for grasping pose determination. A crucial insight for
collar detection is to rearrange the garment’s configuration to
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provide easier access to the collar for grasping. Consequently,
we have developed a depth-aware strategy for computing the
grasping pose, as shown in Fig. 2(c). The objective is to
identify the collar’s contour and designate the center of this
contour as the grasping position.

Based on the output bounding box BI = fD(DI), we crop
the depth image DI to create a smaller image D′

I . Next, we set
up a planar polar coordinate frame with the origin at the center
CI of D′

I . By applying an angle threshold φ, we partition the
positive pixels in D′

I into several patches {Rj}Mj=1:

R = {Rj |(r ∗ cosφj , r ∗ sinφj) ∈ D′
I , r ∈ [1,∞]}Mj=1 (3)

where φj = j ∗ φ,M = 360/φ.
For each sub-region Rj , we extract the pixels that corre-

spond to the minimum depth:

Q = {qj = argmin
i

DI(u, v), (u, v) ∈ Rj}Mj=1 (4)

From the set of pixels Q = {qj}Mj=1, pixels with greater depth
are excluded:

Q′ = {qj ∈ Q| DI(qj)−minDI(Q)

maxDI(Q)−minDI(Q)
< τQ} (5)

Following the processing described above, Q′ includes the
elements of the collar surrounding D′

I . To find the center
θmean, we begin by identify the largest interval within the
sorted Q′ based on the corresponding φj values. Next, we
enhance Q′ by adding an additional endpoint:

Q′
aug = {Q′[−1]− 360, Q′[0], · · · , Q′[−1]}

Q′ = Q′
aug[1 :]−Q′

aug[0 : −1]
(6)

We then determine the indices for the start position Jstart and
the end position Jend respectively. Consequently, the center
position qM is:

Jstart = argmax(Q′)

qM = Q′[Jstart] + (360−Q′[Jstart])/2
(7)

In our dexterous grasping system, the Z-axis v⃗z denotes the
wrist’s pointing direction, while the Y-axis v⃗y indicates the
palm direction. The v⃗z axis is defined as pointing forward
from the egocentric view, whereas the v⃗y extends from the
center, influenced by the collar’s hole structure. In summary,
the grasping pose η is:

η =

[
v⃗y × v⃗z v⃗y v⃗z qM

0 0 0 1

]
v⃗y = qM − CI , v⃗z = [0 0 1]

(8)

After each grasping attempt, we evaluate its success. Specif-
ically, we crop the depth image D to a fixed size D′, and
extract the set Q with Eq. 3 and 4. We compare the depth value
between each element qj ∈ Q and the center C of bounding
box D′:

fE(D) =

M∑
j=1

fJ(D[qj ], D[C])− τ ·M (9)

where fJ(D[qj ], D[C]) returns the comparison results between
D[qj ] and D[C], τ represents the predefined threshold. The
geometry interpretation of this evaluation is to determine
whether the hole structure has been grasped appropriately.

Fig. 3. The procedures of the two-layered hanging alignment. Coarse
Approaching: Adjust the camera pose to facilitate the detection of keypoints
on the rack. Fine Transformation: Detect the keypoints of the rack and refine
the camera pose to reach the predefined pose in the demonstration.

B. Two-layered Hanging

The target supporting item is partly visible within the initial
camera view X̂init w.r.t. the rough estimated position X̂rack,
which is provided to guide the arm’s movement. The objective
here is to determine the transformation between the current
pose and the pose recorded during the demonstration, through
learning from synthetic data. However, directly learning this
transformation present two major challenges. Firstly, regress-
ing the 6 degrees-of-freedom relative pose, which includes
both translation and rotation, is hard to converge due to the
varying modalities involved. Secondly, the depth measurement
noise in real-world scenario can be significant, complicating
the situation further.

To address these challenges, we propose a two-layered
reaching strategy that consists of a coarse approaching fC and
a fine alignment fA, as shown in Fig. 3. During the coarse
phase, we aim to adjust the camera’s viewpoint to effectively
capture the key structure of the supporting item. Once the
position is updated, the camera’s orientation is defined as:

v⃗z = X̂rack −X, v⃗y = v⃗z − v⃗z · v⃗down (10)

where v⃗down pointing downwards and X is the current position
of the camera. Conversely, the fine phase focuses on detecting
the rack’s keypoints and minimize the error in relation to the
observation made during the demonstration. To summarize, the
coarse model fC and the fine model fF produce the following
prediction:

fC(D)→= (∆x,∆y,∆z), fF (D)→ {pk}2k=1 (11)

To learn the models (fC , fA), we generate a synthetic
dataset of depth images using the physics simulator Pybullet
[28]. A 3D model of a rack is constructed, as shown in Fig.
3. A desired camera position X∗

cam relative to the rack is
predefined. To gather diverse data, the camera is randomly
positioned around X̂init. For the coarse model, the label
corresponds to the relative displacement X∗

cam − Xinit. For
the fine model, the camera is randomly placed around X∗

cam.
The supporting point and direction are critical in the hanging
task [21]. Consequently, we designate the first keypoint as the
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TABLE I
PERCEPTION EVALUATION RESULTS OF SEEN AND UNSEEN GARMENTS

TPL NPL SS LS
Precision 0.957 0.762 0.750 0.667

Recall 0.815 0.800 0.750 1.000
Fitness 0.880 0.781 0.750 0.800
µiou 0.832 0.694 0.751 0.715
σiou 0.130 0.130 0.074 0.151

µiou and σiou are the mean and variance of IoU.

endpoint of the supporting part and the second keypoint as the
connection region between the supporting part and the stand-
ing part. The ground-truth positions of the keypoints in each
observation are automatically obtained through simulation.

After training the models (fC , fA) with synthetic data, we
implement them in real-world experiments. The coarse model
fC first take the initial observation as input and output the
relative displacement ∆X = (∆x,∆y,∆z). The camera then
moves to the new position Xinit+∆X . Subsequently, the fine
model fA detects keypoints from the updated observation P =
{pk}2k=1. With the detected keypoints P , we aim to transform
the camera’s pose to achieve the predefined one demonstrated
earlier. The pose alignment cost function is:

C(P, P ∗) = |p1 − p∗1|+ fV (
−−→p1p2,

−−→
p∗1p

∗
2) (12)

The cost function C(P, P ∗) in the minimization process
consists of two components: (1) the distance error associated
with the 1−th keypoint; (2) the directional error of the vector
from 1− th keypoint to 2− th keypoint, computed by fV . In
addition to the alignment error, we also regularize the rotation,
thus the whole optimization procedure is:

min
R,t

C(R ∗ P̂ + t, P ∗) + ||R−RC || (13)

where R, t is the desired relative rotation and the translation,
RC is the orientation of the pose in the coarse phase.

Following the coarse-to-fine alignment strategy, the end-
effector replicates the interaction trajectory demonstrated.

III. RESULTS

In this section, we present a series of experiments designed
to evaluate the performance of our proposed algorithm across
several aspects:

• The recognition performance of our structural region
detection model for various types of garments;

• the accuracy and robustness of our grasping and hanging
strategies;

• the necessity of the key modules within our complete
pipeline.

As illustrated in Fig. 1, the real-world experiments are con-
ducted on two ABB robotic arms with Inspire dexterous
hands. Each arm is equipped with a Realsense D435 camera.
Inference is performed on a machine running Ubuntu 20.04
powered by an NVIDIA RTX A6000 GPU. The mask seg-
mentation is performed using the method outlined in [29].

Fig. 4. Four kinds of garments are involved in the experimental study. (a)
a template polo shirt (TPL). (b) a new polo shirt (NPL). (c) a short-sleeved
shirt (SS). (d) a long-sleeved shirt (LS).

Fig. 5. The detection performance across different confidence thresholds. (a)
Precision. (b) Recall.

A. Recognition

As described in Sec. II-A, we utilize a handover method
between dual arms to automatically gather the dataset. The
training set consists of 130 handover instances featuring a tem-
plate polo shirt, as shown in Fig. 4(a). The dataset collection
takes approximately 1.5 hours. For each handover step, we
record 8 images from various angles at 45−degree interval,
yielding a total of 1040 images.

To assess the generalizability and the robustness of the
recognition model, we include a new polo shirt (Fig. 4(b)),
a short-sleeved shirt (Fig. 4(c)) and a long-sleeved shirt (in
Fig. 4(d)) in the test set. Each garment type consists of a
test set with 30 × 8 images. We evaluate detection accuracy
using precision, recall and F1 score. Additionally, we report
the mean and variance of the Intersection of Union (IoU) to
quantify the overlap of positive detections.

Fig. 6. The typical examples of collar detection across various kinds of
garments. (a) TPL. (b) NPL. (c) SS. (d) LS.
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The confidence threshold is critical for detection perfor-
mance. To thoroughly assess the performance, we analyze
the detection metrics across thresholds ranging from 0.2 to
0.35. The resulting precision and recall metrics are presented
in Fig. 5. It is essential to highlight that performance is
assessed based on each episode rather than individual step.
In this context, we prioritize recall over precision, as our
primary objective is to minimize the risk of missing positive
grasping examples, which could lead to additional handovers.
Furthermore, the grasping success evaluation (Eq. 9) can help
correct the algorithm when negative examples are mistakenly
grasped.

The results show that precision is directly related to con-
fidence, whereas recall is inversely related to it. Table I
presents The optimal performance regarding fitness in relation
to confidence. These findings indicate that our algorithm is re-
silient across various garments. Typically, there are two typical
recognition failures: 1) the model occasionally misidentifies
the sleeve as the collar; and 2) it sometimes fails to detect
collars with a small area.

B. Grasping

All our experiments start with crumpled initial configura-
tions [30]. In each episode, the grasping process proceeds until
either the evaluation criteria are satisfied or the maximum
number of handovers is reached. Two typical baselines are
implemented to evaluate the effectiveness of our proposed
method.

• GCSR [10] employs semantic segmentation for recogniz-
ing structural regions and determines the grasping pose
by analyzing skeleton and surface variation.

• GPGM [17] identifies the grasping position using a
supervised deep neural network and estimates the ori-
entation through normal analysis.

Given that these baselines concentrate on individual images,
we have also developed a score network to determine the
most suitable grasping angle. In particular, we utilize images
with labeled collars as positive samples to train a binary
classification network. During the deployment phase, the angle
with highest score is selected for grasping.

For each method, we perform 30 grasping trials for each
garment shown in Fig. 4 to evaluate the grasping success
rate. Success is defined as instances where the collar regions
are grasped and lifted stably in space. As shown in Table
II, our confidence-guided grasping strategy outperform the
other baseline methods. GCSR locates the collar’s contour
through semantic segmentation. However, this approach op-
erates at the pixel level, requiring a significant amount of
data to effectively train a robust network. In the original
implementation described in [10], it is assumed that the collar
is visible and that a fixed camera is used for sensing. The
performance of their algorithm is heavily dependent on this
specific simplified scenario. GPGM identifies the grasping
position through supervised learning, without considering the
structural regions of the garment. The original implementation
in [10] assumes that the garment is already hung on a rack,

TABLE II
GRASPING EVALUATION RESULTS

TPL NPL SS LS
GCSR [10] 53.3 46.7 33.3 36.7
GPGN [17] 46.7 46.7 26.7 20.0

Ours 93.3 93.3 90.0 86.7

Fig. 7. The typical examples of grasping across various kinds of garments.
(a) TPL. (b) NPL. (c) SS. (d) LS.

which reduces the occurrence of self-occlusion and limits the
variations in state.

The enhance performance of our method can be primarily
attributed to the active search for the collar by adjusting the
configuration of crumpled garments. Additionally, the close-
loop success evaluation significantly minimizes the chances
of false prediction from the models. Fig. 7 illustrates several
successful examples across various kinds of garments. It is
crucial to emphasize that the hand pose is specifically designed
to insert into the ”hole” of the collar to achieve a stable grasp.
There are generally two common types of grasp failures: 1) the
hand may struggle to grasp the garment stably due to incorrect
detection; and 2) the evaluation algorithm may occasionally
yield inaccurate feedback regarding the success of the grasp.

C. Hanging

In accordance with the formulation outlined in [25], we
begin by gathering individual demonstrations for each of the
dual arms respectively. Specifically, we first position the arm
that is pre-grasping the collar into a pose that enables clear
sensing of the rack’s structure, which we refer to as the
”bottleneck pose”. Following this, we record the subsequent
trajectory needed to complete the hanging task.

All experiments in this section begin with a pre-grasping of
the collar. To assess the effectiveness of our proposed method,
we implement two standard baseline approaches:

• DINO [24] employs the large vision model to identify
the corresponding keypoints with the demonstration.

• KOVIS [23] learns keypoint representations in a self-
supervised manner for visual servoing.
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Fig. 8. The typical examples of garment hanging across dual arms. (a) Left
arm. (b) Right arm.

TABLE III
HANGING EVALUATION RESULTS

Left (%) Right (%) All (%)
Dinobot [24] 36.7 40.0 38.3
KOVIS [23] 33.3 30.0 31.7

Ours 90.0 93.3 91.7

Using the detected keypoints, we perform registration to align
the current observation with the demonstration. For each
method, we conduct 30 trials for individual arms to evaluate
the hanging success rate. Success is only counted when the
garment remains stably positioned on the rack after the hands
are released. As shown in Table III, our two-layered hanging
strategy outperforms the other baselines.

Both DINO and KOVIS perform the task using a single-
step alignment, which restricts their effectiveness to situations
where the initial configuration is close to the desired pose. In
their original implementations, both methods focus primarily
on fine manipulation in tabletop settings. However, hanging
garments in spatial contexts presents a significantly greater
challenge. The position adjustments provided by the coarse
approaching enable the camera to achieve a pose that is
more conductive to sense the key structures of the supporting
item, thus facilitating a more accurate alignment with the
demonstrated pose. Fig. 8 illustrates the entire process of our
two-layered hanging strategy using dual arms respectively.
There are generally two common failure modes in the hanging
process: 1) the coarse model may output a displacement
vector that exceeds the arm’s reachability; and 2) the keypoint
detection provided from the fine model may be inaccurate due
to measurement noise from the depth camera.

D. Ablation Study

In this experiment, we examine the contributions of the
confidence-guided grasping and the two-layer hanging strat-

TABLE IV
COMPLETE PIPELINE EVALUATION RESULTS

Close-loop grasping Two-layered hanging Success Rate (%)
✓ ✕ 70.0
✕ ✓ 36.7
✓ ✓ 83.3

egy. Specifically, we eliminate the close-loop evaluation during
the grasping phase and the coarse approaching stage in the
hanging phase respectively. For each method, we conduct 30
complete trials that encompass both grasping and hanging for
three types of garments (NPL, SS, LS). Success rates are
recorded only when the collar is successfully grasped and hung
on the rack in a stable manner. As shown in Table IV, our
algorithm shows a lower success rate when either of the key
modules is removed. On one hand, without the closed-loop
evaluation, the arm occasionally grasps the incorrect region of
the garment. On the other hand, when the coarse approaching
stage is omitted, the arm struggles to achieve the desired
predefined pose in certain challenging scenarios.

Two typical complete episodes are shown in Fig. 9. In
Fig. 9(a), only one search attempt is needed to locate and
successfully grasp the collar. The success is attributed to the
collar being visible to the camera mounted on the slave arm,
which facilitates the detection and arrangement of an appro-
priate grasping pose. After grasping the collar, the hanging
algorithm guides the end-effector to approach and interact
with the rack. Conversely, as shown in Fig. 9(b), multiple
handovers are required in certain cases. This requirement
arises when the collar is obscured within the garment and
is not visible to the camera. As a result, the dual arms
perform handovers until the collar is detected, at which point
the grasp pose is established. In our experiments, we limit
the maximum number of handovers per episode to 10. This
example also highlights the robustness of our algorithm with
respect to the crumpled configuration. One limitation of our
algorithm is that a random element of the garment is selected
for grasping during each handover. Taking into account the
complete structure of the garment to determine the optimal
handover point could potentially expedite the search for the
collar in particularly challenging scenarios.

IV. CONCLUSION

This study presents a novel algorithm for hanging gar-
ments from crumpled configurations. By employing handovers
between dual robotic arms, we are able to automatically
collect a collar detection dataset without the need for human
intervention. Utilizing the trained detection model, we develop
a confidence-guided grasping algorithm and implement a
close-loop judgment algorithm to evaluate the success of the
grasping action. Furthermore, we create a two-layered hanging
algorithm that aligns the garment with the rack in a coarse-to-
fine manner. Through comparative real-world experiments, we
demonstrate the effectiveness and superiority of our proposed
method.

In future work, we aim to deploy the whole algorithm
on a mobile manipulator within a real household setting.
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Fig. 9. Two typical examples of the complete pipeline. (a) A common scenario with only a single step of handover is required. (b) A challenging scenario
that several handovers are required to adjust garment’s configuration to locate the collar.

Additionally, we seek to generalize our algorithm to additional
kinds of garments.
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