
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Safe Learning by Constraint-Aware Policy
Optimization for Robotic Ultrasound Imaging

Anqing Duan, Chenguang Yang, Senior Member, IEEE, Jingyuan Zhao, Shengzeng Huo, Peng Zhou,
Wanyu Ma, Yongping Zheng, Senior Member, IEEE, and David Navarro-Alarcon, Senior Member, IEEE

Abstract—Ultrasound-based medical examination usually re-
quires establishing proper contact between an ultrasound probe
and a human body that ensures the quality of ultrasound images.
The scanning skills are quite challenging for a robot to learn
primarily due to the complex coupling between the applied
force profile and the resulting ultrasound image quality. While
reinforcement learning appears as a powerful tool for learning
complex robot skills, the deployment of these algorithms in
medical robots demands special attention due to the evident safety
concerns that arise from physical probe-tissue interactions. In this
paper, we explicitly consider external constraints on the force
magnitude when searching for the optimal policy parameters to
enhance safety during ultrasound-guided robotic interventions.
In particular, we study policy optimization under the framework
of a constrained Markov decision process. The resulting gradient-
based policy update is then subject to the involved constraints,
which can be readily addressed by the primal-dual interior-
point technique. In addition, upon the observation that policy
update requires consecutive policies to be close to each other to
have stable and robust performance with reinforcement learning
algorithms, we design the learning rate of policy gradient from
an imitation perspective. The performance of the proposed
constraint-aware policy optimization method is validated with
experiments of robotic ultrasound imaging for spinal diagnosis.

Note to Practitioners—This paper was motivated by the prob-
lem of safely learning the optimal interaction force strategy
to facilitate robotic ultrasound imaging. Existing approaches to
robotic ultrasound imaging usually empirically set a constant
value for the scanning force, despite the fact the force strategy
plays an important role in the quality of the ultrasound images.
This paper suggests the usage of reinforcement learning to
identify the optimal interaction force due to the complex acoustic
coupling between the force and the ultrasound image quality.
Specifically, we propose constraint-aware reinforcement learning
in view of the safety-critical issues as a result of physical human-
probe interaction. We then conduct a theoretical analysis of
the proposed safe reinforcement learning, including monotonic
improvement and policy value bound under mild assumptions.
Preliminary real experiments on ultrasound imaging of the spine
of a phantom for scoliosis assessment suggest that the proposed
approach can safely learn the optimal scanning force without
violating the prescribed force threshold. In the future, we would
like to apply our approach to learning the optimal scanning force
on different organs of interest of human subjects.
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Fig. 1. Illustration of medical diagnosis of scoliosis for adolescents through
ultrasound scanning conducted by (a) a human operator and (b) a robotic arm.
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I. INTRODUCTION

MEDICAL robots are promising in the healthcare indus-
try as they can bring many benefits, such as freeing

medical personnel from tedious jobs and standardizing the
treatment procedure [1]. Yet, before medical assistive robots
can widely penetrate people’s daily life, a series of techni-
cal problems need to be addressed, with safety being the
most critical one [2]. There are many examples of physical
human-robot interactive systems in healthcare, e.g., robot-
assisted stethoscopes, ultrasound scanning robots, prosthetics
and orthotics, shock-wave therapy, automated massage sys-
tems, etc. [3]. To deploy these systems in the field, it is
essential to guarantee their safe operation.

Due to the radiation-free, high portability, and non-
invasiveness features, ultrasound imaging is extensively used
in various types of diagnostic tasks and interventions [4]. In
this paper, we particularly deal with ultrasound imaging of
spines for scoliosis assessment, a procedure that evaluates the
abnormal lateral curvature of spines [5]. Our focus is on safely
learning the optimal force profile for ultrasound imaging of a
spine with a robot arm [6].

The manual procedures for ultrasound-based scoliosis as-
sessment are shown in Fig. 1(a), where a sonographer holds
an ultrasound probe to capture images, which are used to
reconstruct the spine’s 3D structure [5]. During this task,
the probe’s motion is adjusted based on real-time ultrasound
images; Fig. 2 shows the spine’s anatomy with its different
regions and corresponding ultrasound images. Learning the
scanning skills for a robot arm (as depicted in Fig. 1(b))



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 2

Cervical 
vertebrae

Thoracic 
vertebrae

Sacral 
vertebrae

Lumbar 
vertebrae

Intervertebral  
gap

Spinous  
process

Fig. 2. Illustration of spinal anatomy with different regions labeled.

is a challenging task due to the complex coupling between
the applied forces and the quality of the resulting ultrasound
images [7]. The adequate control of these forces plays a
decisive role in the quality of the reconstructed 3D spinal
model [8]. Therefore, it is important to learn the optimal
contact force strategies that can provide satisfying imaging
results, which is precisely the goal of this paper.

From an algorithmic perspective, a popular technique for
solving complex problems of robotic decision-making is policy
optimization, a paradigm of reinforcement learning centered
around the policy [9]. Policy optimization aims at finding
an optimal set of control policy parameters based on the
feedback of a specified cost or reward function. The generality
of the reinforcement learning paradigm gradually makes it an
attractive tool for autonomous ultrasound acquisitions, see e.g.,
[8], [10], [11]. Despite recent progress in this direction, the
safety issue resulting from random exploratory policies (which
may result in large contact forces) is usually overlooked. This
situation requires special attention in our application scenario
as it entirely relies on physical interactions between the robot-
manipulated probe and the human patient [12].

We propose to complement the policy update procedure of
vanilla policy gradient with user-specified force constraints.
In addition, upon the observation that policy optimization
restricts consecutive policies to be close to each other, we
design the learning rate of policy gradient from an imitation
principle. In brief, our contributions are outlined as follows:

• Safe policy learning for robotic ultrasound imaging with
constraint-aware policy optimization;

• Imitation learning-informed design of the learning rate
for updating policy parameters;

• Theoretical analysis of the properties of the proposed safe
learning method;

• Experimental studies for validating the proposed method
by safely scanning a phantom’s spine.

The remainder of the paper is organized as follows. Related
work is discussed in Sec. II. Subsequently, Sec. III reviews rel-
evant preliminaries on the technical background. The proposed
methods are presented in Sec. IV, analyzed in Sec. V, and
evaluated in Sec. VI. Finally, Sec. VII concludes the paper.

II. RELATED WORK

Robotic ultrasound image acquisition has received gradual
research attention in recent years [4]. It has been observed that
various robotic techniques have been applied to scan different
parts of the human anatomy, such as limbs [13], breasts [14],
livers [15], kidneys [11], etc. Despite the aforementioned
successful cases, it is noted, however, that safely learning the
optimal contact force still remains an under-explored topic.
The aforementioned studies mainly prescribe the contact force
between the tissue and the probe with a reference force profile,
which is usually determined empirically and heavily depends
on the expertise of a sonographer. To this end, in this paper,
our focus lies on developing methods to safely search for
the optimal contact force that guarantees the quality of the
captured ultrasound images.

Due to the complex acoustic coupling between the in-
teraction force and the ultrasound image quality, we resort
to reinforcement learning to identify such an optimal force
profile. Moreover, given the safety concerns inherent to any
physical human-robot interaction task, learning of the optimal
interaction force profile should take place whilst respecting
external constraints which limit the maximum allowable force
output. We refer to this kind of approach as safe reinforcement
learning [16]. Compared with vanilla reinforcement learning
algorithms, safe reinforcement learning, which remains a
trending research topic, is thought to be more suitable in our
case due to its attribute of constraint awareness.

For instance, constrained policy optimization is proposed to
tackle the issue of safe reinforcement learning by addressing
an optimization problem formulated in the form of a linear
objective with linear and quadratic constraints [17]. Besides,
Lyapunov-based approaches can be leveraged to guarantee
safety by transforming reinforcement learning algorithms into
their safe counterparts [18]. In addition to model-free ap-
proaches, model information can also be used to facilitate
enhancing the feasibility of policy learning where a general-
ized control barrier function is defined to penalize the trends
of approaching the constraint boundary [19]. Distinct from
the aforementioned approaches on constrained reinforcement
learning, our proposed new method addresses the safe learning
problem under the mirror descent framework [20], where the
learning rate for policy updates is devised from the principle
of imitation learning. The resulting nonlinear optimization
problem for policy update is addressed by the primal-dual
interior-point method. Moreover, monotonic improvement can
be presented under certain assumptions, and policy value
bound is provided using the error propagation analysis.

Another closely related research topic on safe learning
is constrained learning from demonstration, which concen-
trates on bounding policy representations [21], especially
the well-established movement primitives, such as con-
strained DMP [22], constrained ProMPs [23], and constrained
KMP [24]. While constrained learning from demonstration
has shown favorable outcomes in dealing with the problem
of limit-violation avoidance for robot trajectory generation,
our proposed approach focuses instead on safe policy search,
which applies to more general scenarios.
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III. PRELIMINARIES

A. Markov Decision Process

A Markov decision process (MDP) is a tuple M =
(S,A, P, c, γ, d0) where S is a set of states, A is a set of
actions, P : S × A × S → R is a transition probability
distribution, c : S ×A → R is a cost function, γ ∈ [0, 1) is a
discount factor, and d0 → R is the starting state distribution.
We assume that the absolute value of the cost function is upper
bounded by Cmax, i.e. |c(s, a)| ≤ Cmax, ∀(s, a) ∈ S × A. A
stochastic policy π ∈ Π : S → P(A) returns a distribution
over actions given the encountered state, where Π denotes the
set of all stationary policies.

The Markov decision process works as follows. The agent
starts from a state sampled by s0 ∼ d0. Then at each time step
t, the agent executes an action at according to π(·|st), receives
an immediate cost c(st, at), and observes the next state st+1

according to the process transition dynamics P(·|st, at). The
above procedure repeats and finally results in a trajectory
τ = (s0, a0, s1, a1, . . .) that records the agent-environment
interaction history. Additionally, one useful notion for studying
infinite-horizon MDP is defined, namely the discounted state
visitation frequency:

dπ(s) = (1− γ)

∞∑
t=0

γtP (st = s | π, d0), (1)

which characterizes visitation measure over states.

B. Reinforcement Learning

The goal of reinforcement learning is to find an optimal
policy π∗ such that it can minimize the expected cumulative
discounted cost J(π). Formally, reinforcement learning solves
the following optimization problem:

π∗ = argmin
π∈Π

J(π), with J(π) = E
τ∼π

[ ∞∑
t=0

γtc(st, at)

]
(2)

where s0 ∼ d0, at ∼ π(·|st), and st+1 ∼ P (·|st, at).
Typically, in the context of robotics, (2) is tackled by policy

gradient algorithms, where the learned policy πθ belongs to
a parametric policy set ΠΘ with θ ∈ Θ and Θ ⊂ Rd.
Specifically, the gradient of J(πθ) with respect to policy
parameter θ is given by [25]:

∇θJ(πθ) = E
τ∼π

[( ∞∑
t=0

∇θ log πθ(at|st)

)
Ψ

]
, (3)

where Ψ =
∑∞

t=0 γ
tc(st, at). Akin to stochastic gradient

descent, the gradient (3) can be estimated from a number I
of trajectory samples {τi}Ii=1,

g := ∇̂θJ(πθ) =
1

I

I∑
i=1

( ∞∑
t=0

∇θ log πθ(a
i
t|sit)

)
Ψi. (4)

Then at the n-th iteration, the parameters of the policy can be
simply updated with policy gradient:

θn+1 = θn − ηng, (5)

where ηn > 0 is a learning rate of the n-th iteration.

Furthermore, given any two policies π and π′, their re-
spective values are related by the well-known performance
difference lemma [26]:

J(π′) = J(π) + E
τ∼π′

[ ∞∑
t=0

γtAπ(st, at)

]
, (6)

where Aπ(s, a) is called the advantage function whose defi-
nition is given by:

Aπ(s, a) = Qπ(s, a)− Vπ(s), (7)

where the state-action value function Qπ(s, a) and the value
function Vπ(s) are respectively given by:

Qπ(s, a) = E
τ∼π

[ ∞∑
t=0

γtc(st, at)|s0 = s, a0 = a

]
,

Vπ(s) = E
τ∼π

[ ∞∑
t=0

γtc(st, at)|s0 = s

]
.

C. Problem Statement
As discussed in Sec. I, reinforcement learning emerges as a

promising tool to identify the optimal contact force scheduling
that generates high-quality ultrasound images of the spine.
Nevertheless, it calls for extra attention on restricting contact
force strength when directly applying (5) in search for the
optimal parameters of the controller. To this end, we propose
to take into account the external constraints on the force
magnitude. Specifically, a Markov decision process associated
with external constraints forms a constrained Markov decision
process (CMDP) [27]. We denote the concerning cost func-
tions as C = {C1, . . . , Cm} with Ci : S × A → R being the
corresponding cost function and defined by:

JCi(π) = E
τ∼π

[ ∞∑
t=0

γtCi(st, at)

]
. (8)

Each cost function needs to be bounded by its corresponding
threshold di. Consequently, the policy optimization problem
within the framework of CMDP is formulated as:

π∗
C = argmin

πθ∈ΠΘ

J(πθ) (9a)

s.t. JCi(πθ) ≤ di, i = 1, . . . ,m. (9b)

Intuitively, the optimal policy π∗
C from (9) accumulates the

minimum possible costs during interacting with the environ-
ment while respecting the hard constraints by expectation.
Such policy optimization procedures featured by constraint
awareness will enhance safety and thus be more suitable for
medical robots interacting with human bodies.

IV. METHODOLOGY

To reconstruct a qualifying 3D spinal image for scoliosis
assessment, the whole back of the test subject needs to be
scanned with the ultrasound probe from the waist to the neck,
as shown in Fig. 3. To safely learn the optimal interaction
strategy, we first introduce the mirror descent framework in
Sec. IV-A. We then illustrate the design of the learning rate
in Sec. IV-B. Finally, constraint-aware policy optimization is
elaborated in Sec. IV-C.
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Fig. 3. Conceptual diagram of the proposed methodology for safely learning the optimal contact force in ultrasound imaging. The upper loop denotes the
optimal force learning procedure and the lower loop denotes the motion control loop. The optimal force strategy is learned through the proposed constraint-
aware policy optimization where the cost function is designed by the quality of ultrasound images.

A. Mirror Descent Framework

As a central topic in online optimization, mirror descent is
increasingly employed to study decision-making algorithms
due to its high analog to on-policy decision-making algo-
rithms. Notably, several reinforcement learning algorithms and
imitation learning algorithms can be recovered by the mirror
descent framework [20]. We first cast the iterative update rule
of policy optimization into the mirror descent framework.

Formally, given the first-order oracle g, policy update at the
n-th iteration conforming to mirror descent is formulated as:

θn+1 = argmin
θ∈Θ

ηn⟨g, θ⟩+Dh(θ∥θn), (10)

where Dh : Θ × Θ → R is the Bregman divergence from θn
to θ with respect to the function h : Θ → R [28]. Specifically,
Dh is defined as:

Dh(θ∥θn) = h(θ)− h(θn)− ⟨∇h(θn), θ − θn⟩. (11)

By choosing h(θ) = 1
2∥θ∥

2, vanilla policy gradient update
(5) can then be recovered. It will be shown later that mirror
descent provides a convenient framework to analyze policy
search subject to constraints.

B. Imitation-Guided Learning Rate

In this section, we consider the design of the learning rate ηn
in (10), which decides how far the policy parameters progress
in one iteration and is often left as a constant hyper-parameter
in vanilla policy gradient. Generally speaking, the value of
a learning rate plays an important role in the algorithm’s
performance. For the reinforcement learning process to be
stable, it has been observed that one common strategy is to
additionally refrain the new policy from deviating too far away
from the old one.

For example, in trust region policy optimization (TRPO), the
maximum Kullback–Leibler (KL) divergence between the old
and the new policy is constrained given any states [9]. Due to
the intractability of the constraint for numerical optimization
and estimation, the practical implementation of TRPO instead
uses an average KL divergence between the old policy and the

new policy averaged over the state distribution induced by the
old policy, which is de facto behavior cloning [29].

Similarly, relative entropy policy search (REPS) constrains
the KL divergence between the old and the new state-action
distribution [30]. As there is a one-to-one correspondence
between policy and state-action visitation frequency, given a
state-action occupancy measure, its corresponding policy is
unique [31]. In other words, the constraint of the observed
state-action distribution and the state-action distribution in-
duced by the new policy in REPS is also equivalent to making
the new policy imitate the old one, sharing the same spirit of
generative adversarial imitation learning [31].

From an imitation perspective to constraining the discrep-
ancy between consecutive policies, we view the old policy πθn

as an expert and new policy πθn+1
as a learner. Our goal is to

bound the value discrepancy between πθn and πθn+1
. To this

end, the imitation loss between the expert and the learner can
be quantified as1:

E
s∼dπn+1

[DKL(πn(·|s), πn+1(·|s))] , (12)

where DKL denotes the KL divergence between two prob-
ability distributions [32]. Due to the unknown and complex
dynamics, the state distribution dπn+1 induced by the learner
policy πn+1 is typically hard to obtain. In practice, one
common solution to this issue is the so-called behavior cloning
where expert policy’s state distribution dπn is employed in lieu
of the learner policy distribution dπn+1. The imitation loss that
we would like to bound is then written as:

JIL(πn+1) = E
s∼dπn

[DKL(πn(·|s), πn+1(·|s))] . (13)

Our designing principle on learning rate is that the policy
parameters shall increment by a maximum allowable step
along the first-order oracle within a given imitation loss δ.
To this end, we first derive the Taylor expansions of (13)
with respect to θn+1 evaluated at θn to yield the relationship

1For simplicity, we write πθn as πn in the following.
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between policy increment value ηng as well as imitation
discrepancy δ:

JIL(π) ≈ JIL(πn) +∇J⊺
IL(θ − θn)+

1

2
(θ − θn)

⊺F (θn)(θ − θn) + o(∥θ − θn∥2), (14)

where JIL(πn) = 0 since the imitation discrepancy is zero
when two policies are identical. Also, as the Taylor expansion
is evaluated at θn which serves as the optimal expert policy by
definition, the first order derivative thus remains zero, namely
∇JIL = 0. Notably, the fact that both JIL(πn) and ∇JIL
equal to zero shall be analytically verified by the properties
of the KL divergence. Finally, ∇2JIL = F (θn) is the Fisher
information matrix [26]:

F (θn) = E
s∼dπn
a∼πn

[∇ log(πn(a|s))∇ log(πn(a|s))⊺] . (15)

As the largest learning step happens when the new policy
results in the maximum allowable imitation loss δ compared
with the previous policy, this implies JIL(πn+1) = δ. By
substituting (5) into (14), we then have:

1

2
ηng

⊺F (θn)ηng = δ. (16)

Consequently, the imitation-guided learning rate ηn at n-th
iteration is obtained as:

ηn =

√
2δ

g⊺F (θn)g
. (17)

Compared with the constant learning rate that is used in
traditional policy gradient methods, our developed adaptive
learning rate dictates the step size of the policy progress from
a principled perspective of imitation learning.

C. Constraint-Aware Policy Optimization

Our ultimate goal is to search for the optimal policy param-
eters that minimize the cost function under external constraints
as formulated in (9). Though performing vanilla reinforcement
learning algorithms such as (10) can lead to a solution to (9a),
the obtained optimal parameters could potentially violate the
constraints as specified by (9b).

To guarantee that the policy search procedure respects the
constraints over the course of task execution, we propose
to augment (10) with (9b) such that each step of parameter
update will take place within the allowed safety region, which
is of critical importance in the case of physical human-
robot interaction. Therefore, at each update step, a constrained
optimization problem needs to be solved.

To make the constraints trackable, we propose to linearize
the constraints following a similar treatment of (3) as shown
in [17]. Specifically, the constraints at the n-th iteration are
approximated as:

p⊺i (θ − θn) + ϕi ≤ 0, i = 1, . . . ,m, (18)

where pi = ∇JCi represents the gradient of the corresponding
constraint Ci and we denote:

ϕi = JCi(πn)− di. (19)

By imposing (18) on (10), a constraint-aware version of the
policy update is thus formulated as:

min
θ∈Θ

f(θ) (20a)

s.t. p⊺i (θ − θn) + ϕi ≤ 0, i = 1, . . . ,m. (20b)

For simplicity, we denote:

f(θ) = ηn⟨g, θ⟩+Dh(θ∥θn).

It can be observed that (20) constitutes a constrained nonlinear
optimization problem. In order to solve it, we employ a primal-
dual interior-point method that is simple and efficient for
solving constrained optimization problems [33].

To implement the primal-dual interior-point method, the
inequality-constrained optimization problem (20) is first trans-
formed into an unconstrained optimization problem with the
help of barrier functions. The corresponding logarithmic bar-
rier function associated with (20b) to convert the inequality
constraints into a penalizing term is defined by:

−
m∑
i=1

log(−p⊺i (θ − θn)− ϕi). (21)

Consequently, the unconstrained optimization problem upon
integrating (21) into the objective (20a) is given by:

Φ(θ, µ) = −f(θ)− µ

m∑
i=1

log(−p⊺i (θ − θn)− ϕi), (22)

where µ > 0 is called the barrier parameter, which usually
makes the problem (22) a better approximation of (20) as it
approaches zero.

To tackle the minimization problem (22), we equate its
derivative with respect to the design variables to zero, which
implies that:

∇Φ = −β(θ)− µ

m∑
i=1

pi
p⊺i (θ − θn) + ϕi

(23a)

= −β(θ)−
m∑
i=1

λipi (23b)

= −β(θ)− P ⊺λ = 0, (23c)

where we denote

β(θ) = ∇f(θ) = ∇h(θ) + (ηng −∇h(θn)).

And we have P =
[
p1, . . . , pm

]⊺
. The dual variable λ ∈ Rm

is introduced as:

λi =
µ

−p⊺i (θ − θn)− ϕi
. (24)

The zeros of (23), which represent the solution to (22), can
be found with the help of root-finding algorithms. Here we
employ the popular Newton’s method to address (23c) and
(24). The search directions can be determined by solving the
following system of linear equations:[

−∇2h(θ) −P ⊺

IλP C

] [
δθ
δλ

]
=

[
−β(θ) + P ⊺λ
µ1− Cλ

]
, (25)

where C = diag(−p⊺1(θ− θn)−ϕ1, . . . ,−p⊺m(θ− θn)−ϕm)
with diag(·) returning a diagonal matrix, I denotes the identity
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Algorithm 1 Constraint-Aware Policy Optimization
Input: Initial policy parameters θ0, trajectory samples num-
ber I, max policy optimization iteration N , max interior
point iteration K, imitation loss δ, and step size ηθ and ηλ;
for n = 0, 1, . . . , N do

for i = 1, 2, . . . , I do
Roll out policy θn and collect trajectory τi;

end for
Compute the Fisher information matrix F (θn) as per (15);
Calculate the policy learning rate ηn as per (17);
Estimate the policy gradient g as per (4);
Approximate the constraints C as per (18);
for k = 0, 1, . . . ,K do

Form the system of linear equations as per (25);
Update policy parameters as per (26);

end for
end for
Output: Optimal parameters θ∗.

matrix, and 1 denotes a (column) vector of ones. The solution
to (25) is then used to perform iterations as follows:[

θk+1

λk+1

]
=

[
θk
λk

]
+

[
ηθδθk
ηλδλk

]
(26)

where ηθ and ηλ denote the step size for θ and λ, respec-
tively. Each step of the policy update procedure will undergo
iteration as (26), which guarantees that the obtained policy
will respect the specified constraints. The overall procedure for
safe reinforcement learning of scanning skills is summarized
in Algorithm 1.

V. THEORETICAL ANALYSIS

This section analyzes the performance of the proposed
constraint-aware policy optimization. In particular, we prove
the monotonic improvement of the proposed algorithm (Sec.
V-A) as well as the bound of value difference between
consecutive policies (Sec. V-B).

To begin with, the following assumptions are made to
facilitate theoretical analysis as in prior work on sequential
decision making [34].

Assumption 1. We assume that h is α-strong convex, namely
∀θ1, θ2 ∈ Θ, ∃α > 0 such that:

(∇h(θ1)−∇h(θ2))(θ1 − θ2) ≥ α∥θ1 − θ2∥22. (27)

Assumption 2. We assume that J is l-Lipschitz continuous,
namely ∀θ1, θ2 ∈ Θ, ∃l > 0 such that:

J(θ2)− J(θ1) ≤ ⟨∇J(θ1), θ2 − θ1⟩+
l

2
∥θ1 − θ2∥22. (28)

A. Monotonic Improvement

We first consider proving monotonic improvement for
constraint-free policy optimization.

Proposition 1. In the case of ηnl < 2α, monotonic improve-
ment for (10) holds, i.e.

J(θn+1) < J(θn). (29)

Proof. Using the fact of optimality and convexity properties
for (10), we have:

⟨g+ 1

ηn
(∇h(θn+1)−∇h(θn)), θ−θn+1⟩ ≥ 0, ∀θ ∈ Θ. (30)

By re-arranging (30), we then have:

⟨g, θn − θn+1⟩ ≥
1

ηn
⟨∇h(θn)−∇h(θn+1), θn − θn+1⟩

≥ α

ηn
∥θn+1 − θn∥22. (31)

From the smoothness assumption on J made in Assumption
2, it can be obtained that:

J(θn+1)− J(θn)

≤⟨∇J(θn), θn+1 − θn⟩+
l

2
∥θn+1 − θn∥22 (32a)

=⟨g, θn+1− θn⟩+
l

2
∥θn+1 − θn∥22 (32b)

≤(− α

ηn
+

l

2
)∥θn+1 − θn∥22. (32c)

Therefore, when ηnl < 2α, (32c) becomes negative, which
yields J(θn+1) < J(θn). ■

This implies that the cumulative cost is reduced after each
iteration and thus policy improves monotonically. Note that
here we use g as an expectation of policy gradient. For a
more general analysis that takes randomness of sampling g
into account, interested readers are referred to [20].

In the case where the constraints are imposed, we consider
studying the issue of monotonic improvement in terms of two
situations, depending whether the constraints are triggered or
not. If the constraints are not triggered during optimization,
the property of monotonic improvement can be concluded
following the same proof for the unconstrained case as in
Proposition 1. We then prove that monotonic improvement
also holds in the case where there are constraints triggered
during policy optimization with ηnl < 2α. To this end, we
first show that (31) holds for the case of constraints triggered
as well, as illustrated in the following lemma.

Lemma 1. Consider (20) under Assumption 1 and 2; It holds
that:

⟨g, θn − θn+1⟩ ≥
α

ηn
∥θn+1 − θn∥22. (33)

Proof. Let the indices of the active constraints collectively
expressed as Ca = [Ca1, . . . , Cak]. When considering only
the active constraints, (20) shares the same solution as the
following inequality-constrained optimization problem:

min
θ∈Θ

ηn⟨g, θ⟩+Dh(θ∥θn) (34a)

s.t. Aθ = b (34b)

where A and b are defined as follows:

A =

p
⊺
Ca1

...
p⊺Cak

 and b =

p
⊺
Ca1

θn − ϕCa1

...
p⊺Cak

θn − ϕCak

 . (35)
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By employing the Lagrangian multiplier λE ≥ 0, the corre-
sponding Lagrangian function of (34) can be written as:

min
θ∈Θ

L(θ, λE) = ηn⟨g, θ⟩+Dh(θ∥θn) + λ⊺
E(Aθ− b). (36)

Similarly to (31), from (36) we can obtain:

⟨g +A⊺λ∗
E , θn+1 − θn⟩ ≤ − α

ηn
∥θn+1 − θn∥22, (37)

where λ∗
E represents the optimal value of the multiplier and

can be expressed as

λ∗
E = argmax

λE≥0
inf
θ
L(θ, λE). (38)

Furthermore, we can show that:

⟨A⊺λ∗
E , θn+1 − θn⟩ = λ∗

E
⊺(b−Aθn) ≥ 0. (39)

where we used the facts that Aθn+1 = b as (34b) and Aθn ≤ b
as shown by (35). As a result, by leveraging the property of
(39), we can further conclude from (37) that:

⟨g, θn+1 − θn⟩ ≤ − α

ηn
∥θn+1 − θn∥22 − ⟨A⊺λ∗

E , θn+1 − θn⟩

≤ − α

ηn
∥θn+1 − θn∥22, (40)

which reveals (33). ■

Proposition 2. For ηnl < 2α, monotonic improvement for
(20) holds, i.e. J(θn+1) < J(θn).

Proof. When there is no active constraint, the proof of mono-
tonic improvement follows directly from Proposition 1. When
there are active constraints, the proof can be derived by
combining Lemma 1 and (32c). ■

Intuitively, such conclusion is as expected, with evidence
from the unconstrained case that a smaller step increment
will lead to a lower cost for the next policy. When external
constraints are imposed, policy update will become more con-
servative and thus monotonic improvement can be admitted.

B. Policy Value Bound

In this part, we aim at providing the bound on the absolute
value of the value difference between two consecutive policies
to showcase the properties of the evolution of the learned
policy. Specifically, we derive the bound by leveraging the
error propagation analysis framework [35].

Lemma 2. The expected return of the updated policy πn+1 is
given by2:

J(πn+1) =
∑
s

dπn
(s)
∑
a

πn+1(a|s)c(s, a). (41)

Proof. We first write the performance difference lemma (6) in
terms of the state visitation frequency as:

J(πn+1) = J(πn) +
∑
s

dπn+1(s)
∑
a

πn+1Aπn(s, a). (42)

2For compactness, the dependency on state and/or action is omitted when
there is no ambiguity.

As pointed in [9], the second term of the right hand side can
be locally approximated using the state visitation frequency
induced by policy πn, which implies that:∑

s

dπn+1(s)
∑
a

πn+1(a|s)Aπ(s, a)

=
∑
s

dπn+1
(s)
∑
a

πn+1(a|s)c(s, a)− J(πn) (43a)

≈
∑
s

dπn
(s)
∑
a

πn+1(a|s)c(s, a)− J(πn). (43b)

Substituting (43b) into (42), we can obtain the expression for
the value of πn+1 as:

J(πn+1) =
∑
s

dπn
(s)
∑
a

πn+1(a|s)c(s, a), (44)

which completes the proof. ■

Proposition 3. The upper bound of the absolute value of
the value difference between two consecutive policies πn and
πn+1 is given by:

|J(πn+1)− J(πn)| ≤
2
√
2Cmax

1− γ

√
E

s∼dπn

[DKL(πn+1, πn)].

Proof. By resorting to the framework of the error propagation
analysis, the policy value difference is upper bounded by:

|J(πn+1)− J(πn)|

=
1

1− γ

∣∣∣∣∣∑
s

dπn
(s)
∑
a

(πn+1 − πn)c(s, a)

∣∣∣∣∣ (45a)

≤Cmax

1− γ

∑
s

dπn
(s)
∑
a

|πn+1 − πn| (45b)

=
2Cmax

1− γ
E

s∼dπn

[DTV(πn+1, πn)] (45c)

≤2Cmax

1− γ
E

s∼dπn

[√
2DKL(πn+1, πn)

]
(45d)

≤2
√
2Cmax

1− γ

√
E

s∼dπn

[DKL(πn+1, πn)] (45e)

wherein DTV denotes the total variation between two probabil-
ity distributions. Notably, the inequality (45d) is obtained due
to Pinsker’s inequality that bounds the total variation distance
in terms of the KL divergence. The inequality (45e) is obtained
following Jensen’s inequality. ■

VI. EXPERIMENTS

In this section, we evaluate the effectiveness of our method
by conducting ultrasound scanning experiments with a robotic
manipulator and a tissue phantom. The overall experimental
setup is first introduced in Sec. VI-A. Subsequently, we report
the obtained results in Sec. VI-B.

A. Experimental Setup

An illustration of the hardware setup for evaluating the
proposed method of safe robotic ultrasound imaging is shown
in Fig. 4. The test subject involved in the experiments is
a phantom model with realistic mechanical properties. The
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Fig. 4. Illustration of the experimental platform for scoliosis assessment.

phantom has a deformed spine embedded inside its upper body.
The high-fidelity phantom resembles a human upper body with
mean stiffness of 195N/m. At the core of the setup is a six
DoFs industrial robot manipulator UFACTORY xArm, which
is connected via the TCP/IP protocol to the control computer.
A USB ultrasound probe Sonoptek is attached to the end-
effector of the robot manipulator, capturing ultrasound images
at a frequency of 7.5MHz. To sense the interaction force
between the phantom’s back and the ultrasound probe, a six-
axis force/torque sensor Robotiq FT300 is attached between
the ultrasound probe and the robot manipulator. A depth
camera RealSense is placed at the base link of the robot
manipulator to have the point cloud of the phantom’s back. The
phantom is placed on the Scolioscan platform, which receives
ultrasound images and coordinates of the probe for final 3D
reconstruction of the spine [36].

The overall control system for our ultrasound scanning task
is depicted in Fig. 5. The proposed robot control system is
composed of three components, namely, a path planner, a force
controller, and an orientation regulator. The path planner is
responsible for making the ultrasound probe track the detected
spinous process by sending the velocity command of the
robot end-effector along the vertical direction. Detection of
the spinous process is achieved by processing the ultrasound
images with an ultrasound processing neural network, which
uses ResNet18 as its backbone followed by three deconvolu-
tional layers and one convolutional layer. The output of the
network is a heatmap, composed of the probability of each
pixel being a spinous process. The point with the maximum
probability is then identified as the spinous process.

Once the spinous process is localized, the path planner
commands the ultrasound probe such that the spinous process
is maintained in the center of the probe’s field of view.
In addition to the bilateral movement command, the probe
speed along the caudo-cranial direction is set to a constant
value of 0.003m/s. The force controller is designed as a PI
controller that regulates the optimal interaction force profile
learned by the proposed safe reinforcement learning algorithm.
The orientation regulator is responsible to adjust the probe’s
orientation such that the probe perpendicularly points towards
the closest point on the phantom surface.

Robot Manipulator Ultrasound Probe Phantom

Path Planner Ultrasound
Perception Network

Ultrasound 
Transducer

Safe Learning Policy F/T Sensor

Depth CameraOrientation Regulator

Force Controller

Fig. 5. Control block of ultrasound scanning for scoliosis diagnosis.

B. Experimental Results

The effectiveness of our proposed constraint-aware policy
optimization is validated by safely learning the optimal inter-
action force profile, which will then be used for ultrasound
scanning the phantom to clearly reconstruct its 3D spinal
image. The corresponding learning mechanism should pertain
to improving the policy parameters dictated by a cost function,
which shall be properly designed to accurately reveal the learn-
ing goal. As our goal is to generate a clear 3D image of the
spine, it is intuitive to design the cost function that can score
the quality of 3D spinal images. Notwithstanding, the cost
function for numerical evaluation of the quality of 3D spinal
images is quite arduous to constitute. For the same spinal
image, consensus on its quality can be hardly reached among
sonographers as the evaluation can be very subjective [5].
Moreover, improving the contact force policy on the cost that
evaluates the quality of the 3D spinal images could suffer from
the credit assignment issue since the outcomes of the policy
are delayed to the very end of 3D spinal image reconstruction.

As a workaround, our cost is designed in terms of the
ultrasound image quality instead of the quality of the 3D
spinal image. Traditional methods to evaluate ultrasound im-
age quality, such as random walks, usually penalize shadow
areas as they are undesirable [37]. This evaluation metric is
not suitable in our case because the existence of the shadow
areas is an inherent property of ultrasound imaging of bones
due to the fact that ultrasound signals will be dramatically
attenuated at the tissue-spine interface. Also, the random walks
algorithm can be time-consuming to run. To this end, we
propose to leverage the ultrasonic perception network that
localizes the spinous process to evaluate the quality of the
ultrasound images. More precisely, the confidence probability
Pc(t) of localizing the spinous process, which can be obtained
in real-time, is used as a proxy of the ultrasound image
quality at time step t. The immediate cost is then expressed
as c(t) = 1− Pc(t).

To have better efficiency, we consider selecting several key
locations containing the spinous processes on the phantom’s
back to separately identify the optimal contact strength rather
than learning over the whole back. When finally assessing the
spine conditions of the phantom, the force profile along the
phantom’s back is obtained by fitting the optimal force mag-
nitude learned at different key locations. To make the selected
locations representative, three key locations are selected in the
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(a) 0.5N (b) 1N (c) 2N (d) 3N (f) 5N(e) 4N

Fig. 6. Force versus ultrasound images quality for lumbar top row and thoracic bottom row

Fig. 7. Force strategy learning at different locations of the phantom’s back.
Three locations are located at the lumbar region (left column) and the other
three locations are located at the thoracic region (right column).

lumbar region and the other three locations are placed in the
thoracic region, as shown in Fig. 7. All the selected locations
share a similar learning procedure. The state is chosen as the
received ultrasound image. The action of the policy is a force
magnitude given the current state. The policy is trained to
gradually improve the quality of the ultrasound image within
the constraint of the force limits.

Before applying the proposed safe reinforcement learning
algorithm, we first show the effects of different force mag-
nitudes on the resulting ultrasound image quality. We exert
different constant force magnitudes ranging from 0.5N to
5N at one lumbar spinous process and one thoracic spinous
process. It can be qualitatively observed that the clarity of
the ultrasound images becomes higher as the force magnitude
increases, as shown in Fig. 6. Quantitatively, Fig. 8 shows
the confidence probability of identifying the spinous process
with the ultrasound perception neural network with respect
to different force strategies. It can be concluded that the
probability of finding out the spinous process becomes higher
when increasing the interaction force.

For the constraint of safe reinforcement learning, we set the
maximum force limit as 10N. The number of the trajectory
samples is I = 5. The maximum iteration steps of policy

Fig. 8. Probabilities of identifying the spinous process with different force
magnitudes at lumbar (top row) and thoracic (bottom row).

optimization are N = 100 and the maximum interior point
iteration is K = 10. The imitation loss for bounding the
deviation of the step for policy update is set as δ = 0.05.
And the step size parameters for the primal-dual update are
set as ηθ = ηλ = 0.01. The policy of interaction force is
parametrized with a five-layer fully-connected neural network
with the ReLU activation. The starting policy is initialized as
a constant of 0.5N. The learning results are shown in Fig. 9. It
can be observed that the vanilla reinforcement learning algo-
rithm violates the specified force limits in some cases. While
the force limit is well respected using the proposed constraint-
aware policy optimization, thus the prescribed safety constraint
is respected.

With the learned optimal force magnitudes at different loca-
tions, we obtain the optimal force profile by fitting these values
along the phantom’s back for vanilla reinforcement learning
and constraint-aware policy optimization, respectively. Then
we use both fitted force profiles to scan the phantom’s back.
The ultrasound probe begins from the sacrum region and
slides the phantom’s back in a caudo-cranial direction. The
measured force evolution versus the phantom’s back is shown
in Fig. 10. Finally, the 3D spinal images are reconstructed
using the volume projection imaging method for scoliosis
assessment [38]. The volume projection imaging algorithm
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Fig. 9. Force evolution versus iterations at different locations of the phantom’s
back where blue curves denote the results from vanilla reinforcement learning,
green curves denote the results from constraint-aware policy optimization, and
red curves denote the maximum force limits.

Fig. 10. Applying the optimal force profiles on the phantom’s back, which are
learned from vanilla reinforcement learning (left) and constraint-aware policy
optimization (right), respectively.

visualizes spine anatomy by slicing the collected ultrasound
images together with the corresponding 3D spatial informa-
tion. Fig. 11 shows the evolution of the reconstructed spines
along the vanilla reinforcement learning procedure. Fig. 12
shows the evolution of the reconstructed spines along the
constraint-aware policy optimization learning procedure. It can
be seen that the trend of clarity for obtained spines is gradually
improved for both cases. Qualitatively, the transverse processes
are becoming more and more identifiable and the black spots
due to contact loss are becoming less and less prominent
[5]. Also, the quality of the final spine image constructed
by safe learning is comparable to the one constructed by
vanilla reinforcement learning, which is sufficient to be used
for scoliosis assessment.

VII. CONCLUSION

In this paper, we presented constraint-aware policy op-
timization to safely learn the optimal force profile when
ultrasound scanning spines for scoliosis assessment. The ef-
fectiveness of the proposed algorithm is verified with real
experiments of finding out the optimal force profile for 3D
spinal reconstruction by ultrasound scanning a phantom. It
is observed that the vanilla reinforcement learning algorithm
exceeds the pre-specified threshold during policy search while
our proposed approach can respect the force limit and thus
guarantee safety.

Fig. 11. Evolution of 3D reconstruction image of the phantom spine with
vanilla reinforcement learning.

Fig. 12. Evolution of 3D reconstruction image of the phantom spine with
constraint-aware policy optimization.

There are certainly a few limitations associated with our
work. For example, the basis for our reward design shall
be further investigated. In our current setting, we use the
probability of the confidence of the spinous process as a
proxy for quantifying the ultrasound image quality. As an
indirect indicator is utilized to evaluate the quality of the whole
ultrasound image. Another limitation in our framework lies in
the lack of automatic spine region segmentation. With this
information available, the robot could possess more flexible
control policies for different regions.

Regarding future work, we would like to develop a force
observer such that robotic ultrasound scanning can be con-
ducted without F/T sensors by estimating the interaction force
between the probe and the patient’s back [39]. Furthermore, to
make the interaction skill generalizable to real human testers,
we would like to investigate the relationship between the
interaction skill with respect to relevant features, e.g. body
mass index, skin elasticity, muscle distribution, etc.
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