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Abstract

Real-time reactive manipulation of deformable linear objects is a challenging task that requires robots to quickly and adaptively
respond to changes in the object’s deformed shape that result from external forces. In this paper, a novel approach is proposed
for real-time reactive deformable linear object manipulation in the context of human-robot collaboration. The proposed approach
combines a topological latent representation and a fixed-time sliding mode controller to enable seamless interaction between humans
and robots. The introduced topological control model offers a framework for controlling the dynamic shape of deformable objects.
By leveraging the topological representation, our approach captures the connectivity and structure of the objects’ shapes within
a latent space. This enables improved generalization and performance when handling complex deformable shapes. A fixed-time
sliding mode controller ensures that the object is manipulated in real-time, while also ensuring that it remains accurate and stable
during the manipulation process. To validate our proposed framework, we first conduct motor-robot experiments to simulate fixed
human interaction processes, enabling straightforward comparisons with other approaches. We then follow up with human-robot
experiments to demonstrate the effectiveness of our approach.
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1. Introduction

In recent years, there has been significant progress in Human-
Robot Collaboration (HRC) [1, 2, 3, 4, 5] research and devel-
opment, with the aim of achieving more efficient and effective
collaboration between humans and robots in various domains,
such as manufacturing [6], construction [7, 8], healthcare [9],
and service industries [10]. One area of HRC that has received
a lot of attention is the manipulation of objects [11, 5]. In par-
ticular, robots are increasingly being designed and developed
to manipulate objects in various environments and conditions.
However, most of the research in this area has focused on rigid
objects, whose unchangeable geometry makes them easier to
manipulate than deformable objects.

Deformable objects, on the other hand, can change their
shape/configuration under the action of external forces, e.g.,
coming from a robotic gripper. Examples of deformable ob-
jects include fabrics [12], wires [13], cables [14], and soft tis-
sues [15]. Manipulating deformable objects is more challeng-
ing than manipulating rigid objects because they have complex
and nonlinear behaviors [16, 17, 18, 19]. Despite these chal-
lenges, there are many potential applications [20, 21, 22, 23] of
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deformable object manipulation for HRC in the manufacturing
industry, such as fabric handling and sewing, food processing,
assembly of flexible parts and so on. In addition to their com-
plex dynamics, the manipulation of deformable objects presents
several difficulties in the context of human-robot collaboration
due to the unpredictability in the human’s manipulation actions.
[24, 25].
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Fig. 1: Conceptual representation for a reactive deformable linear object ma-
nipulation in the context of human-robot collaboration, where the robot is adap-
tively deforming the linear object into the initial shape in response to the human
partner’s action in real-time.

The manipulation of deformable objects in the context of
HRC (see Fig. 1 for a conceptual representation) has not been
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Fig. 2: (a)-(c) show at varying scales ϵ0, ϵ1, and ϵ2, the Vietoris-Rips complex Vϵ (q) of a point cloud q changes its connectivity as the distance threshold ϵ is
increased. (d) presents the d-th persistence diagram Gd captures the emergence and disappearance of d-dimensional topological features.

sufficiently studied; Most of the existing HRC research has fo-
cused on rigid object manipulation. Furthermore, existing ap-
proaches [26, 27] for the manipulation of deformable objects
typically rely on analytical or numerical models [28, 29] that
describe the object’s dynamics and behavior. These models are
often computationally expensive and may not accurately cap-
ture the complex nature of soft bodies. Additionally, these mod-
els may not be suitable for real-time control, which is essential
for human-robot collaboration [29]. Therefore, this gap is a sig-
nificant challenge that needs to be addressed to fully realize the
potential of Deformable object manipulation (DOM) in various
HRC applications [30].

To address these challenges, we propose a novel approach for
real-time reactive deformable linear object manipulation in the
context of human-robot collaboration. Our approach is named
the topological latent control model, and it combines a topolog-
ical latent representation and a fixed-time sliding controller to
enable seamless interaction between humans and robots. The
topological latent representation provides a generic approach
for applying persistent homology to calculate topological signa-
tures for both the original shape space and latent shape space to
derive a topological loss term used for training an auto-encoder
network. By leveraging this topological latent representation,
our approach is able to capture the connectivity and structure
of the objects’ shapes within a latent space. This enables im-
proved generalization and performance when handling complex
deformable shapes. Besides, the application of a fixed-time
sliding controller ensures that the object is manipulated in real-
time, while also ensuring that it remains stable and safe during
the manipulation process. Therefore, the proposed topological
latent control model provides a framework for controlling the
shape and motion of deformable objects based on their topolog-
ical properties. This approach is highly efficient and computa-
tionally inexpensive, as it avoids the need for complex analyti-
cal or numerical models. In general, our research takes a further
step in that direction by weaving computational topology prin-
ciples into the controller design for human-robot collaboration
tasks involving the manipulation of deformable linear objects.

Our proposed method is highly effective, as it provides a ro-
bust and reliable control strategy that can adapt to a wide range
of deformable objects. To demonstrate the effectiveness of our
method, we test it on a variety of deformable linear objects in
the context of HRC. Our experiments show that our approach is

effective in conducting the manipulation task, enabling seam-
less interaction between humans and robots in a wide range of
real-world experiments. A video of the conducted experiments
can be obtained from https://sites.google.com/view/

hrc-dom. This paper provides a valuable contribution to the
field of human-robot collaboration, offering a new approach for
real-time reactive deformable linear object manipulation that is
both effective and safe.

In summary, we present four key contributions in this paper:

• A novel method for real-time human-robot collaboration
that allows the robot to adjust its actions in real time based
on the behavior of the deformable object.

• A latent representation embedding topological structure to
ensure an efficient and effective control for deformable lin-
ear objects.

• A controller that takes as input the latent topological fea-
tures to support real-time human-robot collaboration dur-
ing deformable object manipulation tasks.

• A detailed experimental validation of the proposed frame-
work in which robot and unmodelled human partners col-
laborate to manipulate a deformable linear object.

The rest of the paper is organized as follows: Sect. 2 pro-
vides a detailed overview of related work in the field. Sect. 3
gives preliminaries of persistent homology used for construct-
ing topological autoencoder. Sect. 4 present a general sys-
tem description problem definition. Sect. 5 describes the pro-
posed approach in detail, including the topological latent con-
trol model, topological latent representation, and fixed-time
sliding controller. Sect. 6 presents the experimental results,
and Sect. 7 concludes the paper and discusses future research
directions.

2. Related Work

Deformable object manipulation (DOM) [16, 17, 18] is an
emerging research problem in robotics that involves handling
objects that can change their shape, such as cables, fabrics, and
bags. DOM poses significant challenges due to the complex
dynamics of the object and the real-time requirement for the
manipulation. Several studies [31, 31, 32] have addressed dif-
ferent aspects of DOM, such as modeling, perception, planning,
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and control. However, most of them do not consider a collab-
orative manipulation scenario with human partners, which can
enhance the performance and efficiency of DOM tasks.

Some previous works have explored human-robot collab-
oration for manipulating deformable objects. For example,
[20] proposed a method of collaborative manipulation of a
deformable sheet between a person and a robot, where the
robot follows the human motion to handle the cloth. How-
ever, their method relies on predefined motion primitives and
does not account for the feedback from the object deforma-
tion. Other works [19, 33, 34, 35] have focused on learning-
based approaches for DOM, such as DeformableRavens [36],
which uses reinforcement learning to train a robot to manipu-
late cables, fabrics, and bags towards desired goal configura-
tions. However, these approaches do not explicitly model the
topological properties of the deformable object, such as knots
and folds, which are crucial for some DOM tasks. Our work
takes a further step in that direction by introducing concepts
from computational topology into the controller design for de-
formable linear object manipulation tasks.

[20] considered collaborative manipulation of a deformable
sheet between a person and a dual-armed robot. The pro-
posed approach was capable of sensing contact force to main-
tain the tension of the sheet, and in turn comply with human
motion, which is akin to handling a tablecloth with a part-
ner but with one’s eyes closed. [37] presented a model-based
closed-loop control framework for seamless human-robot or
multi-robot fabric co-manipulation. A mass-spring model is
used for simulating ply distortion and generating optimal grasp-
ing points’ spatial localization. The model is enhanced with
real-time operator handling actions, as captured from the im-
plemented perception system. The proposed sensor and model-
based controlling framework incorporate robot motion plan-
ners either for operator support, through non-rigid object co-
manipulation, or synchronization of cooperative robots within
fully automated tasks. [38] presented a model-based motion
planner for deformable object co-manipulation and the devel-
oped closed-loop controlling framework interprets manipula-
tion inputs into appropriate handling actions by simulating fab-
ric’s distortion through a mass-spring mode. [39] presented the
collaborative manipulation of rigid objects with deformable ob-
jects by introducing a novel framework comprising an Action
Prediction Network (APN) and a Configuration Prediction Net-
work (CPN) to model the complex pattern and stochasticity of
soft-rigid body systems. Finally, they demonstrated the effec-
tiveness of moving rigid objects to a target position with ropes
connected to robotic arms.

In this paper, we introduce an innovative method for reac-
tive manipulation of deformable linear objects (DLOs) within
the context of human-robot collaboration. This method is capa-
ble of handling complex deformable linear objects and has the
ability to react and adapt to the actions of the human partner
in real time. Our approach leverages a topological latent space
to capture the deformation state of the object and to generate
appropriate control actions for the robot. This method provides
a unique advantage over existing methods by offering a more
comprehensive representation of DLOs and enabling more pre-

cise control over their manipulation. Through several collab-
orative DLO manipulation tasks, we evaluate the efficacy of
our proposed method, showcasing its superiority over current
methods in terms of deformation error, task response time, and
robustness to human interventions. To our knowledge, this is
the first work that integrates topological modeling with a latent
control model for collaborative DLO manipulation. This pio-
neering approach opens new possibilities for more effective and
adaptive human-robot collaboration in handling deformable lin-
ear objects.

3. Preliminaries

In computational topology, the method used for analyzing
topological features of data across multiple scales is called per-
sistent homology [40, 41]. To obtain the persistent homology of
a space, it must first be represented as a simplicial complex,
which seeks to generate a family of groups by using matrix
reduction algorithms. These groups are called the homology
groups denoted by K , where d-dimensional topological fea-
tures comprise the d-th homology group Hd(K) Typically, ho-
mology groups are summarized according to their ranks to ob-
tain an invariant “signature” of the data manifoldM. Given an
unknown manifoldM over a point cloud Q = {q1, . . . , qn} ⊆ R3

and a distance metric: Q×Q→ R (i.e., the Euclidean distance),
to keep track of changes in the homology groups across vari-
ous scales of the metric, persistent homology employs the con-
struction of a unique simplicial complex known as the Vietoris-
Rips complex [42]. Let Vϵ(Q) be the Vietoris-Rips com-
plex of Q with a scale ϵ, and it has all simplices of the point
cloud Q whose elements satisfy a distance criterion, namely
dist

(
ei, e j

)
≤ ϵ for all i, j. As the Vietoris-Rips complex pro-

vides a nesting structure, Vϵi(Q) ⊆ Vϵ j (Q) when ϵi ≤ ϵ j, it
becomes possible to trace alterations in the homology groups
when ϵ increases [43] (see Fig. 2 for a detailed illustration of
this process).

Let PH (Vϵ(Q)) represent the persistent homology of the
point cloud Q’s Vietoris-Rips complex, and it results in a tuple
({G1,G2, . . .}, {ϕ1, ϕ2, . . .}) Gi and ϕi denote the persistence dia-
grams and persistence pairings, respectively. In d-dimensional
persistence diagram Gd, we define a tuple of (a, b), where a
denotes a scale ϵ at which a d-dimensional topological fea-
ture emerges, and b represents another scale ϵ′ at which it dis-
appears. The d-dimensional persistence consists of pairs of
indices denoted as (i, j) that correspond to simplices si, s j ∈

Vϵ(Q) responsible for generating and annihilating topological
features characterized by (a, b) ∈ Gd, respectively. To com-
pare the diagram G and G′, we can use the bottleneck distance
defined as: db (G,G′) := infη:G→G′ supx∈G ∥x − η(x)∥∞, where
η : G → G′ is defined as a bijection between the diagram G and
G′, and ∥ · ∥∞ refers to the L∞ norm. Finally, we define GQ as
the set of persistence diagrams for the point cloud Q, which can
be obtained from the computation of PH (Vϵ(Q)).
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Fig. 3: The illustration of human-robot collaboration for deformable linear ob-
ject manipulation.

4. Problem Formulation

In this article, we propose a novel human-robot collabora-
tive system consisting of a robot manipulator, a human hand,
and a deformable linear object, as depicted in Fig. 3. We as-
sume that the deformable linear object is firmly held by both
the robot arm and the human hand and there is no displacement
between the manipulated object and the robotic end-effector or
the object and the human hand, respectively. The human hand
applies force on one side of the deformable linear object and
leads to shape deformations (measured by a top-down depth
camera), while the control system attempts to generate control
commands for the robot arm to reactively recover its original
shape. During the entire process, the human partner is lead-
ing the deformable object manipulation task by simply moving
one side of the deformable linear object, so we define it as a
“leader” role. On the other hand, the robot manipulator car-
ries the other side of the manipulated linear object to achieve
intelligent and reactive behavior to follow the leader’s motion
in real-time, which we refer to as “follower” (see Fig. 3 for
details).

As shown in Fig. 3, a classic deformable object shape ser-
voing task is reconsidered in the context of human-robot col-
laboration. Our objective is to develop a model-free reactive
vision-based controller to respond to the movements of a hu-
man partner on deformable linear objects, without relying on
any prior knowledge of the physical characteristics of elastic
rods. Throughout the process, the controller instructs the robot
to continually deform the linear object to maintain its initial
shape in real time. In this task, the human partner leads the
deformation first, then the robot controller follows the human
action and manipulates the object into the initial shape. There-
fore, we defined the human partner as the leader role, and the
robot controller as the follower role in this human-robot collab-
oration.

Assumption 1. The robot arm and human hand both securely
grip the flexible linear object, and there is no motion between
the manipulated object and the robot end-effector or between
the object and the human hand.

Consider a 6-degree-of-freedom (DOF) robot with revolute
joints, we denote the joint-angle vector as q ∈ R6, and the end-

effector pose (3-DOF position and 3-DOF orientation) as x ∈
R6, respectively. According to the classical kinematic equation
of the manipulator, the differential relationship between q and
x is given as follows:

ẋ =
∂x
∂q

(q)q̇ (1)

where the matrix ∂x
∂q (q) ∈ R6×6 represents the analytical kine-

matic equation of the robot. In this paper, the robot is assumed
to be controlled with a kinematic interface, i.e., the robot can
accurately operate the given velocity commands (e.g., the ve-
locities of joint or end-effector).

Remark 1. In this work, we present a controller that we have
designed with the capacity to adapt to speed control across any
given dimensionality. While it is typical for the dimensional-
ity of the end-effector to be less than 6, our controller is not
confined to this limitation.

For the purpose of our experiments, and to provide a clear
demonstration of performance, we have streamlined our focus
to the utilization of 3D translation. This decision allows us to
functionally validate our proposed framework for reactive de-
formable object manipulation in an efficient yet effective man-
ner. It is important to note that our controller has been engi-
neered with versatility in mind. Therefore, it can comfortably
accommodate any rotational requirements that may arise, ren-
dering it capable of operating under more complex conditions
if necessary.

Remark 2. In this paper, the speed control signal of the end-
effector is designed, and by using (1) the angular joint velocity
command of the manipulator can be calculated, accordingly.
Note that in real physical experiments, this joint velocity com-
mand typically suffers a saturation effect.

In this paper, a depth camera within an eye-to-hand configu-
ration to observe the shape of the elastic cable. For simplicity,
we use the commonly used center keypoints based splines to
represent the object’s shape, with the following definitions:

s = [ c1, . . . , cN ]⊤ ∈ R3N (2)

where N denotes the number of total center key points consti-
tuting the spline of the linear object, ci = [xi, yi, zi] ∈ R3 is the
Cartesian coordinates of the i-th centerline point. Though B-
splines provide a powerful tool for representing DLOs, in this
study, we have chosen to utilize splines. This choice was made
based on the simplicity and suitability of splines for our par-
ticular control algorithms, and we found that splines offered a
sufficient balance between complexity and performance for our
application.

In this study, our focus is on a shape servoing task, where the
pose x of the end-effector definitely influences the shape s of the
elastic cable. We assume the material properties of the objects
and human movements remain relatively stable throughout the
manipulation process. Consequently, within the scope of local
deformation [28], the shape of the deformable object can be
represented by an unknown nonlinear function:

s = fS (x) (3)
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Remark 3. It is important to note that the poses of a human
hand or a gripper do not unambiguously define the configu-
ration of a deformable linear object. According to [44], the
placements of both ends of the object can result in multiple
static equilibrium configurations. This essentially means that
the shape of the object is not uniquely determined by the posi-
tions of its ends. During the shape servoing tasks we consider,
that minor movements by the human operator lead to corre-
spondingly small deformations. This gradual change allows the
robot sufficient time to adapt to and manage these local defor-
mations effectively.

Then the kinematic model of first-order can be obtained by
calculating the time derivative of (3), resulting in the following
equation:

ṡ =
∂ fS
∂x

ẋ = J s(x)ẋ (4)

where J s(x) is the deformation Jacobian matrix (DJM) [15],
which describes the kinematic relationship between the robot
and original shape feature of the manipulated deformable linear
object.

Assumption 2. The deformation Jacobian matrix (DJM) is
able to describe the kinematic relationship between the robot
and the manipulated deformable linear object.

However, the large dimension of the original shape s is 3N,
so it is inefficient to be directly used as the inputs of the con-
troller since not all the dimension of the shape data space is
necessary for the controller solving the manipulation tasks and
some of the information are redundant during the task. In our
approach, we design a feature extraction method to construct a
low-dimensional feature vector z ∈ Rk(k ≪ 3N) to represent s,
which characterizes the original shape s but with significantly
fewer-dimensional feedback vector. Theoretically, the feature z
has a one-to-one mapping relationship with s, i.e., z = fZ(s).
Thus, the latent shape feature z can be obtained as below:

z = fZ(s) = fZ( fS (x)) (5)

The initial kinematic model of first-order can be obtained by
calculating the time derivative of (5), resulting in the following
equation:

ż =
∂ fZ
∂x

ẋ = Jz(x)ẋ (6)

where Jz(x) is the latent deformation Jacobian matrix (LDJM),
which describes the kinematic relationship between the robot
and the low-dimensional shape feature of the manipulated de-
formable linear object. As the physical information of the ob-
ject is usually unknown and difficult to obtain through identi-
fications, the DJM often needs to be estimated numerically. It
should be noted that the deformations of the DLO depend solely
on its potential energy, the force of contact between the manip-
ulator and the DLO, as well as the force of contact with the
human hand. The quasi-static configuration (6) holds when the

materials properties of objects and the human motions do not
change significantly during the manipulation process, as LDJM
Jz(x) captures the velocity mapping between latent shapes and
the robot motions.

Assumption 3. The DJM can be separated into two parts:
J(x) = Ĵ + J̃, where J̃ is the approximation error and Ĵ is the
estimated J(x).

Assumption 4. A bound exists for the approximation error J̃,
∥J̃∥2 ≤ η, for η as an unknown positive constant.

5. Methodology

In this section, we propose a novel framework of human-
robot collaboration for reactive deformable linear object ma-
nipulation as shown in Fig. 4, which is mainly composed of
three components, namely, a deformable object state estima-
tor, a topological-aware latent shape space, and a fixed-time
sliding model-based controller. The deformable shapes of the
manipulated linear object are represented by point cloud data.
With the Gaussian Mixture Model, the deformable shapes are
perceived as the corresponding centroids along the centerline
of the object. Followed by a topological auto-encoder, the de-
formable centerlines are compressed into a low-dimensional la-
tent space. At last, a fixed-time sliding model-based controller
is used to command the robot action to follow the human action
for achieving the shape servoing task in a reactive manner.

In this process, we start with an initial deformable linear
shape s0, and after a series of human-robot interactions, the
current shape becomes si. Our goal is to command the robot
manipulator to apply force to one side of the deformable object
and deform it into the desired shape sd. This target shape is re-
garded as a similar shape to s0. The procedure begins with the
state estimator, which is able to represent the original shapes
perceived by point clouds {qi} as a set of centerline points {ci}.
This step is performed at every timestep. Next, a topological-
aware auto-encoder fh : C → Z is trained once in a pre-training
phase. This is achieved by combining the reconstruction loss
Lrec and topological lossLtopo. The auto-encoder is used to en-
code the centerline-based shapes ci from the high-dimensional
shape space C into a low-dimensional latent shape spaceZ dur-
ing each timestep. With the constructed latent shape space, a
deep neural network-based latent shape predictor is used at each
timestep to predict the desired latent shape zd. Together with zi,
these are regarded as the inputs for the designed fixed-time slid-
ing model to propose robot commands in each timestep. By do-
ing so, the robot agent is able to accomplish the shape servoing
task reactively during human-robot collaborations.

5.1. Deformable Linear Object State Estimation

It is crucial to estimate the state when performing reactive
manipulations of deformable linear objects during human-robot
collaborations. As shown in Fig. 4, depth sensors or stereo
cameras can be used to represent the state of a deformable
object st at time step t as a dense, noisy, and occluded point
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Fig. 4: Conceptual representation of human-robot collaboration for reactive deformable linear object manipulation. The goal of our proposed framework is to
design a human-robot collaborative system to automatically execute robot action ui to reach the desired shape state sd after the intermediate shape state si under
action from a human partner given its beginning shape state s0. The proposed framework is composed of three components, namely, (1) a Gaussian Mixture Model
(GMM)-based state estimator for the deformable linear object (top left), (2) a latent shape space built upon topological loss using the topological auto-encoder
(bottom left), and (3) a fixed-time sliding model-based controller for reactive controls on the manipulated linear object (bottom right).

cloud qt = q1t, q2t, . . . , qt
M ∈ RM×D, where M is the point

cloud resolution and D is the point dimension. The goal of
the state estimator is to estimate a concise and simplified rep-
resentation of the state denoted by a series of centerline points
C = {ct

1, c
t
2, . . . , c

t
N} ∈ RN×D at time step t, where ct

i ∈ R1×3

represents the 3D coordinate of the i-th key point at time step
t. Structure preserved registration (SPR) [45] consider that the
perceived point clouds qt are sampled ct from a Gaussian Mix-
ture Model (GMM), and centroids of the point cloud represent
the key points of the deformable linear object shape st. Based
on Bayes’ theorem, the probability of a point qt

m sampled from
the mixture model can be defined as below:

p
(
qt

m

)
=

N+1∑
n=1

p(n)p
(
qt

m | n
)

(7)

where p(n) denote the weight of the n-th mixture component,
and p

(
qt

m | n
)

denote the probability of sampling qt
m from the n-

th mixture component. Assuming that all Gaussians have equal
weight, a uniform distribution used for handling noise and out-
liers can be expressed as below:

p(n) =
{

(1 − µ) 1
n , n = 1, . . . ,N

µ, n = N + 1 (8)

p
(
qt

m | n
)
=

{
N

(
qt

m; ct
n, σ

2I
)
, n = 1, . . . ,N

1
M , n = N + 1

(9)

The main objective is to maximize the log-likelihood L sam-
pled from the point cloud qt, which can be formulated as a prob-
lem of Maximum Likelihood Estimation (MLE). The optimiza-
tion of mixture centroids for maximizing the log-likelihood
function L is non-convex due to the summation inside log(·),
making direct optimization infeasible. Thus, we construct an-
other log-likelihood functionO having a lower bound ofL. The
maximization of O through the EM algorithm [46] involves the
E-step (expectation step) and M-step (maximization step), that
iteratively estimate

(
ct

n, σ
2
)

by maximizing O. The formula for
O is given as:

O
(
ct

n, σ
2
)
=

M∑
m=1

N+1∑
n=1

p
(
n | qt

m

)
log

(
p(n)p

(
qt

m | n
))

(10)

It is worth noting that by moving the inside summation of log(·)
to the front, it becomes more convenient for further computa-
tion. The optimization of O is aimed to increase the value of
L except at local optima, and The use of Jensen’s inequality
[47] can demonstrate that function O serves as a lower bound
for function L. As a result, elevating the value of O will in-
evitably lead to an increase in the value of L unless it has al-
ready reached a local optimum. By comparing the structures
of O and L, we see that the summation inside the logarithm in
L has been moved to the front in O, providing computational
convenience. The EM algorithm [46] can be used with the defi-
nition of the complete log-likelihood function to iteratively esti-
mate

(
ct

n, σ
2
)

by maximizing O through the E-step and M-step.
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By utilizing the definition of the complete log-likelihood func-
tion, the EM algorithm [46] can be employed to iteratively esti-
mate

(
ct

n, σ
2
)

by maximizing O through E-step and M-step.

Algorithm 1: Persistent Diagram Calculation for De-
formable Shapes with Vietoris-Rips Complex

Input: Distance matrix DC on the deformable shape
space C, Maximum scale parameter εmax

Output: Persistence diagram GC on the deformable
shape space C

1 Initialize an empty set of simplices S ;
2 Initialize an empty list of birth-death pairs G = [] ;
3 for each entry (i, j) in D do
4 if Di j ≤ εmax then
5 Add the edge ei j to S ;
6 end
7 end
8 Sort S in non-decreasing order of edge length ;
9 for each edge ei j in S do

10 Add (i, j) to the Vietoris-Rips complexV ;
11 Compute the connected components ofV ;
12 if adding pairing (i, j) created a new connected

component then
13 ϕC = (i, j) ;
14 Add the birth time of the new component to G as

(Di j,∞) ;
15 else
16 Update the death time of the older component in

G to Di j ;
17 end
18 end
19 return G ;

5.2. Latent Shape Space

Due to the infinite configurations and complex dynamics of
deformable objects, it is difficult to characterize the shapes with
topological features. In addition, the use of centerline-based
shape representation poses challenges when directly incorpo-
rated into a controller. Due to its high dimensionality, it com-
plicates the process of identifying the optimal solution for con-
trol actions. This complexity can potentially lead to instability
if the controller struggles to quickly ascertain a suitable solu-
tion, or if the derived solution ends up being suboptimal [48].
Therefore, designing an effective low-dimensional representa-
tion for the deformable objects to reduce the feature dimension
and preserve topological structure is necessary. In this article,
by using persistent homology, we propose a generic approach
that applies topological auto-encoders [49] to calculate topo-
logical signatures for both the original shape space and latent
shape space to derive a topological loss term when training an
auto-encoder network. Fig. 6 (also see the second component
in Fig. 4 ) depicts an overview of our method, and we divide
this learning process into three individual steps in the following.

𝜀 = 0.043 𝜀 = 0.048 𝜀 = 0.053

𝜀 = 0.101 𝜀 = 1.46 𝜀 = 0.262

Fig. 5: Conceptual representation of Vietoris-Rips complex computation on an
“S”-shaped deformable linear object.

5.2.1. Vietoris-Rips Complex Calculation
To begin, we employ the distance matrix DC to compute

the persistent homology of the Vietoris-Rips complex of a de-
formable shape space C (each shape in the shape space is repre-
sented as a set of centerline points. In this work, we choose to
use the Euclidean distance for the calculation of DC, but other
distances can be used as well. We then determine ϵ := max DC
and construct the corresponding Vietoris-Rips complex, de-
noted by Vϵ

(
DS

)
. As illustrated in Fig. 5, we provide a

detailed example of Vietoris-Rips complex computation on a
“S”-shaped deformable linear object where birth time and death
time are updated after adding each pairing (i, j). For a dimen-
sion d ∈ N> 0, a set of persistence diagrams GC and a set of
persistence pairings ϕC can be obtained. The persistence pair-
ing ϕCd for dimension d consists of the indices of simplices that
participate in the emergence and disappearance of topological
characteristics in d dimensions. Persistent homology computa-
tion identifies a set of edge indices that are deemed “topologi-
cally significant,” and each of these sets is represented by a per-
sistence pairing. Alg. 1 shows the detailed computation process
of persistent diagram for Deformable Shapes with Vietoris-Rips
Complex.

5.2.2. Selecting indices from pairings
In this section, our objective is to choose indices from the

persistence pairing and transform them into a distance metric
between two vertices. We modify this distance to align the topo-
logical characteristics of the input space and the latent space.
For 0-dimensional topological features, we only need to exam-
ine the indices of edges, which are the ”

:
“destroyer” simplices,

in the pairing ϕC0 . Our preliminary experiments suggest that
utilizing 1-dimensional topological features only prolongs the
computation time. As a result, subsequent experiments will ex-
clusively concentrate on 0-dimensional persistence diagrams.
Hence, we denote the 0-dimensional persistence diagram and
pairing of C as

(
GC, ϕC

)
.

5.2.3. Topological Autoencoder
We start by considering a mini-batch c consisting of l points

from the shape data space C (i.e., a set of centerline points). We
then construct an autoencoder using a composite function fh◦ fg,
where fh : C → Z is the encoder function and fg : Z → C is
the decoder function. Here, z denotes the latent codes obtained
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Topo-E Topo-D

Reconstruction Loss

Topological Loss

Original Shape Space Latent Shape Space Reconstructed Shape Space

Fig. 6: An overview of the topological-aware latent shape space construction
approach. Given a mini-batch shape represented by a spline denoted by a set
of centerline key points c in original shape space C, we apply the topological
auto-encoder to reconstruct c, resulting in a reconstruction c′. In addition to
the usual reconstruction loss, we calculate our topological loss based on the
topological structure differences between persistence diagrams computed from
c and its latent variable z ∈ Z. The goal of the topological loss is to guide the
auto-encoder to preserve the topological features of the original shape space
into the latent representations.

by applying the encoder function to the mini-batch c, i.e., z =
fh(c). In a forward pass, we compute the persistent homology
in both the original shape space and the generated latent space,
as below:(

Gs, ϕs) := H (Vϵ(c))(
Gz, ϕz) := H (Vϵ(z))

(11)

To obtain the persistence diagram values, we use the edge
indices provided by the persistence pairings to subset the dis-
tance matrix. We can represent the persistence diagram as a
set that contains the same information as the distances retrieved
with the pairing, denoted as Gc ≃ Dc[ϕc]. We treat Dc[ϕc] as
a vector in R|ϕc |. By comparing the persistence diagrams ob-
tained from the data space and latent space, we can construct
a topological regularization term Ltopo, which is added to the
reconstruction loss of an autoencoder. The overall loss function
is then given by:

L = Lrec(c, fg( fh(c))) + λLtopo (12)

where Lrec is the reconstruction loss, fh and fg are the encoder
and decoder functions respectively, and λ is a regularization pa-
rameter that controls the strength of the regularization.

Let us consider how to express Ltopo. We select edge indices
from πc and πz to calculate theV value, which represents topo-
logically relevant distances from the distance matrix. Each per-
sistence diagram entry indicates a distance between two data
points. To ensure unbiased estimation and efficient training,
we take into account the union set arising from selected edges
in c and z. The topological loss term of the autoencoder con-
sists of two parts that tackle the “directed” loss that arises when
topological characteristics in one of the two spaces remain un-
changed. Thus, Ltopo = LC→Z +LZ→C, where

LC→Z :=
1
2

∥∥∥Dc [
ϕc] − Dz [ϕc]∥∥∥2

and
LZ→C :=

1
2

∥∥∥Dz [ϕz] − Dc [
ϕz]∥∥∥2

,

By considering the union set arising from selected edges, an
informative loss can be determined by at least |c| distances. Our
formulation aims to align the distances between c and z, which
in turn leads to an alignment of distances between C andZ.

If the two spaces are perfectly aligned, thenLC→Z andLZ→C
are both equal to zero, as the pairings and corresponding dis-
tances coincide. However, if Ltopo = 0, it does not necessarily
mean that the persistence pairings and diagrams are identical.
To calculate the gradient, we use ω to represent the encoder pa-
rameters, and δ :=

(
Dc [
ϕc] − Dz [ϕc]). The partial derivative of

LC→Z with respect to ω can be obtained as follows:

∂

∂ω
LC→Z =

∂

∂ω

(
1
2

∥∥∥Dc [
ϕc] − Dz [ϕc]∥∥∥2

)
= −δ⊤

(
∂Dz [ϕc]
∂ω

)
= −δ⊤

 |ϕ
c |∑

i=1

∂Dz [ϕc]
i

∂ω


In the above equation, the size of a persistence pairing is de-
noted by |ϕs|, while Dz [ϕc]

i indicates the ith component of the
vector of paired distances. An analogous derivation applies to
LZ→C, where ϕc is substituted with ϕz. Furthermore, since
the distances between input samples are independent of the
encoder network, the derivative of Dc with respect to ω must
be zero. Given the stability of the persistence diagram, where
small shifts in the function result in only minor modifications to
the diagram as outlined by Cohen [50], the diagram remains ro-
bust even against infinitesimal alterations of its entries (please
refer to the associated definition and theorem detailed in Sec-
tion 5.3). Consequently, our topological loss maintains differ-
entiability at each update step throughout the training process.

Topo-E

Topo-E

128 64 32

512 256 64

512 256 64

Fig. 7: Conceptual representation of the designed neural network that takes
the initial latent shape z0 and current latent shape zi as inputs and predicts the
target latent shape zd .

With the built latent shape space, we train a neural network
as shown in Fig. 7 that takes as inputs current latent shape zi

and initial latent shape z0, and outputs its desired latent shape
zd. The dimension of the latent shape space is set to 16 in the
following experiments, and we train this neural network by it-
eratively collecting a data set composed of tuples {(z0, zi, zd)}
with the bimanual manipulation algorithms in [14].
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5.3. Controller Design

Mathematical Properties Some necessary lemmas, assump-
tions, and definitions related to mathematical properties are
given as follows:

Lemma 1. In [51], the function sigk(x) = |x|k sgn(x) is defined,
where x ∈ R, k > 0, and sgn denotes the standard sign function.

Lemma 2. [51]
(∑n

i=1 |xi|
)p
≤

∑n
i=1 |xi|

p holds for any xi ∈

R, i = 1, 2, . . . , n, where p is a real number satisfying 0 < p <
1.

Lemma 3. [51] n1−p
(∑n

i=1 |xi|
)p
≤

∑n
i=1 |xi|

p holds for any xi ∈

R, i = 1, 2, . . . , n, and p > 1.

Lemma 4. [52] For any x ∈ R and δ > 0, we have the inequal-
ity satisfies: 0 ≤ |x| − x tanh(x/δ) ≤ κδ where κ = 0.2785 with
satisfying κ = e−(κ+1).

Lemma 5. [52] For h > 0 and x ≥ 0, y > 0, the following
inequality holds: xh(y − x) ≤ (y1+h − x1+h)/(1 + h).

Lemma 6. [52] For h > 1, x > 0, y ≤ x and y ∈ R, it holds
that: (x − y)h ≥ yh − xh.

Lemma 7. [53] For a continuous positive definite and radially
unbounded function V(x) : Rn → R which satisfies the follow-
ing inequality as shown:

V̇(x) ≤ −α1Va1 (x) − β1Va2 (x) + ρ1 (13)

where α1, β1, and ρ1 are all positive constants and the param-
eters a1 ∈ (0, 1), and a2 ∈ (1,∞), then the trajectory of the
system ẋ(t) = f (x) is practical fixed-time stable. The final con-
vergence domain of the system can be expressed as follows:

Ω1 = {x|V(x) ≤ min{(
ρ1

α1(1 − θ)
)

1
a1 , (

ρ1

β1(1 − θ)
)

1
a2 }} (14)

where θ ∈ (0, 1) is a positive constant. The settling time in such
a system to reach the residual set can be expressed as follows:

T ≤ Tmax =
1

α1θ(1 − a1)
+

1
β1θ(a2 − 1)

(15)

Definition 1. Let X and Y be two non-empty subsets of a met-
ric space (M, d), the Hausdorff distance dH(X,Y) and the bot-
tleneck are defined as:

dH(X,Y) = max
{

sup
x∈X

d(x,Y), sup
y∈Y

d(X, y)
}

dB(X,Y) = inf
φ:X→Y

sup
x∈X
∥x − φ(x)∥q

(16)

where sup represents the supremum and d(a, B) = infb∈B d(a, b)
(inf denotes the infimum) quantifies the distance from a point
a ∈ X to the subset B ⊆ X, and q ≤ ∞ and φ ranges over
bijections between X and Y.

Theorem 1. The stability of the persistence diagram: Given
two functions, f and g, and their corresponding persistence di-
agrams, D( f ) and D(g), on a topological space, the bottleneck
distance between the of the persistence diagrams bounds the
L∞-norm between the two functions:

dB(D( f ),D(g)) ≤ ∥ f − g∥∞ (17)

The assumptions required for this result are mild and are sat-
isfied by Morse functions on compact manifolds, piecewise lin-
ear functions on simplicial complexes, and more. The bottle-
neck distance is based on a bijection between the points and
is therefore always at least the Hausdorff distance between the
two diagrams.

Definition 2. In [54], we can find the following vectorial
power definitions for any arbitrary vector x ∈ Rn:

sigk (x) =
[
sigk (x1) , . . . , sigk (xn)

]⊺
∈ Rn

|x|k = diag
{
|x1|

k, . . . , |xn|
k
}
∈ Rn×n

The fixed-time sliding mode control is used to control the
shape of the elastic rod. Throughout this paper, we denote the
velocity motion of the robot as u = ṙ for simplicity. The shape-
motion relationship considering Assumption 3 satisfies:

ṡ = Ju = Ĵu + J̃u (18)

Two error variables are defined:

e1 = s − sd, e2 = ṡ − Ĵu (19)

and its derivative with respect to time is:

ė1 = ṡ − ṡd, ė2 = s̈ − ˙̂Ju − Ĵu̇ (20)

Combining with (18), it yields

ė1 = Ĵu + J̃u − ṡd (21)

The velocity control input can be defined as below:

u = Ĵ+
(
ṡd − a11 sig 2b11−1 (e1) − a12 sig 2b12−1 (e1)

)
(22)

where Ĵ+ is the pseudo-inverse of the Jacobian matrix Ĵ. a11 >
0, a12 > 0, 0 < b11 < 1, b12 > 1 are design parameters specify-
ing the convergence speed of the controller (22) and the system
stability indirectly. In order to measure the error of shape track-
ing, a quadratic function is introduced:

V1(e1) =
1
2

e⊺1 e1 (23)

Time differentiation of (23) yields

V̇1 (e1) = e⊺1 ė1 = e⊺1 (Ĵu − ṡd) + e⊺1 J̃u (24)

Substituting the controller (22) into (24), one can get

V̇1 = e⊺1
(
−a11 sig 2b11−1 (e1) − a12 sig 2b12−1 (e1)

)
+ e⊺1 J̃u
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Considering Lemma 2 and Lemma 3, it yields

V̇1 ≤ −a11∥e1∥
2b11 − a12 p1−b12∥e1∥

2b12 + e⊺1 J̃u (25)

By considering Young’s inequality, it can obtain the inequal-
ity as follows:

e⊺1 J̃u ≤ ∥e1∥
2/4 + η∥u∥2 (26)

Substituting (26) into (25) obtains:

V̇1 ≤ −a11∥e1∥
2b11 − a12 p1−b12∥e1∥

2b12 +
1
4
∥e1∥

2 + η∥u∥2

The adaptation rule of the DJM can be defined as:

˙̂J = (a21 sig 2b21−1 (e2) + a22 sig 2b22−1 (e2) + s̈ − Ĵu̇ + σ)u+

σ = e⊺+2 (η̂ tanh(
∥u∥2

δ
)∥u∥2 +

1
4
∥e1∥

2) (27)

where a21 > 0, a22 > 0, 0 < b21 < 1, b22 > 1 are design param-
eters determining the convergence speed of the approximation
of the Jacobian matrix. The adaptive rule of η̂ is designed as
follows:

˙̂η = tanh(∥u∥2/δ)∥u∥2 − a31η̂
2b3−1 − a32η̂

2b3+1 (28)

where δ is a positive constant. a31 > 0, a32 > 0, 1
2 < b3 < 1

are design parameters. Define the quadratic function V2(e2) =
1
2 e⊺2 e2, and differentiating V2 with respect to time and using (20)
gains

V̇2 = e⊺2 ė2 = e⊺2 (s̈ − ˙̂Ju − Ĵu̇) (29)

Substituting (27) into (29), and considering Lemma 2 and
Lemma 3, it yields

V̇2 = −a21e⊺2 sig 2b21−1 (e2) − a22e⊺2 sig 2b22−1 (e2) − e⊺2σ

≤ −a21∥e2∥
2b21 − a22 p1−b22∥e2∥

2b22 − e⊺2σ (30)

Proposition 1. Assuming the dynamic system (18) is in closed-
loop with the controller (22) under the conditions of Assump-
tions 3 and 4, with the Jacobian approximation (27) and the
adaptive update rule (28), two conclusions can be drawn: 1)
all signals within the closed-loop system remain uniformly ulti-
mately bounded (UUB); 2) the deformation error e1 converges
to a compact set near zero within a fixed time frame, with no
occurrence of any singularities during the task.

Consider the energy-like function:

V = V1 + V2 +
1
2
η̃2 (31)

where η̃ = η− η̂ is the estimation error, with η̂ being the estima-
tion of η. With V̇1 and V̇2, time differentiation of (31) yields

V̇ ≤ −a11∥e1∥
2b11 − a21∥e2∥

2b21 − a12 p1−b12∥e1∥
2b12 − η̃ ˙̂η

− a22 p1−b22∥e2∥
2b22 +

1
4
∥e1∥

2 + η∥u∥2 − e⊺2σ (32)

With the adaptive update rule (28) and Lemma 4, we can get
the following inequality:

1
4 ∥e1∥

2 + η∥u∥2 − e⊺2σ − η̃ ˙̂η

= η∥u∥2 − η̂ tanh
(
∥u∥2
δ

)
∥u∥2 − η̃ ˙̂η

≤ ηκδ + η̃
(
∥u∥2 tanh

(
∥u∥2
δ

)
− ˙̂η

)
≤ ηκδ + a31η̃η̂

2b3−1 + a32η̃η̂
2b3+1

(33)

And, considering Lemma 5 and Lemma 6, we have:

η̃η̂2b3−1 ≤
2η2b3 − η̃2b3

2b3
, η̃η̂2b3+1 ≤

2η2b3+2 − η̃2b3+2

2b3 + 2
(34)

Substituting (33) and (34) into (32), it yields

V̇ = −(a11∥e1∥
2b11 + a21∥e2∥

2b21 )

− (a12 p1−b12∥e1∥
2b12 + a22 p1−b22∥e2∥

2b22 )

−
a31

2b3
η̃2b3 −

a32

2b3 + 2
η̃2b3+2

+ (ηκδ +
a31

b3
η2b3 +

a32

b3 + 1
η2b3+2)

≤ −a1Vb1 − a2Vb2 + Ω (35)

where the coefficients are:

a1 = min(2a11, 2a21,
a31

b3
)

a2 = min(2a12 p1−b12 , 2a22 p1−b22 ,
a32

b3 + 1
)

b1 = min(b11, b21, b3), b2 = min(b12, b22, b3 + 1)

Ω = ηκδ +
a31

b3
η2b3 +

a32

b3 + 1
η2b3+2 (36)

By selecting appropriate parameters that ensure a1 > 0, a2 >
0, b1 ∈ (0, 1), b2 ∈ (1,+∞), and referring to (35) and Lemma 7,
V converges to the compact set:

lim
t→Tmax

V ≤ Vm = min{(
Ω

a1(1 −ϖ)
)

1
b1 , (

Ω

a2(1 −ϖ)
)

1
b2 } (37)

where ϖ ∈ (0, 1) is a user-define constant, within the fixed
convergence time Tmax calculated as [53]:

Tmax ≤
1

a1ϖ(1 − b1)
+

1
a2ϖ(b2 − 1)

(38)

It implies that all states of the closed-loop system are
bounded. Define the augmented variable e = [e⊺1 , e

⊺
2 ]⊺, and

further from the construction of V (given in (31)), 1
2 e⊺e ≤ Vm

can be derived. Then, we have:

Ωe = {e|∥e∥ ≤
√

2Vm, t ≥ Tmax} (39)

By adjusting ai, bi, i = 1, 2, we can make the convergence range
of V smaller. The above analysis implies that the shape error
e1 and motion estimation error e2 converge to a compact set
around zero within a fixed-time [53]. The above results demon-
strate that the DLO can be deformed into the target configura-
tion within a fixed time and all signals as practical fixed-time
stable.
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The proposed controller (35) is the overdetermined format,
which means that the error e1 can only converge to a local op-
timum whose size depends on the accessibility of the desired
shape sd. A local minimum is unavoidable for this class of DJM
form-based manipulation tasks.

Remark 4. The fixed-time SMC controller in this paper aims to
regulate the dynamic performance of the system without consid-
ering the initial value of the system, rather than focusing only
on the system acceleration. There are times when low-speed
manipulation of DLOs is equally important in industry.

Remark 5. Discrete difference [55] and Levant differentiator
[56] are used to obtain ṡ and s̈ in the experiments. In addi-
tion, the tactile sensor can be used to measure friction between
the gripper (e.g., Robotiq-85) and objects. Then it monitors
whether grippers and objects are connected in real time.

PoseCNN

Input Image 

Input Image

Naive-C

 PoseCNN-C

Fig. 8: Conceptual representation of our two baseline models for solving re-
active shape servoing tasks of the deformable linear object under human-robot
collaboration. The upper Naı̈ve-C model employs the transformation of the
leftmost k centerline points to compute the target desired pose, while the lower
PoseCNN-C model utilizes the PoseCNN framework to predict the transforma-
tion of the deformable object from the leader side for the desired pose calcula-
tion.

5.4. Comparison with Existing Methods

Our work is pioneering in its approach to visual servoing
tasks for deformable linear objects in the Human-Robot Collab-
oration (HRC) context. As it’s the first to consider deformable
linear manipulation in this context, finding a perfectly match-
ing SOTA method for comparison poses a significant challenge.
Despite this, we have made an extensive effort to compare our
approach with SOTA methods in each related domain: Visual
Servoing (VS), Deformable Object Manipulation (DOM), and
Human Robot Collaboration (HRC). For VS, we selected a
technique for adaptively manipulating deformable objects us-
ing model-free visual servoing [57]. This technique stands out
as a SOTA method within VS. Please note that our approach is
model-free, hence model-based visual servoing methods were
not considered for comparison. For DOM, we chose a similar
latent shape control (LSC) model [58], referred to as AutoLSC,
which combines a naive auto-encoder with a normal sliding
model for the deformable linear object manipulation task. This

method has demonstrated remarkable performance in DOM and
thus represents the SOTA in this field. We also introduced an
additional LSC model, referred to as AutoLSC2, that replaces
our method with a naive auto-encoder network. This ablation
analysis helps to underline the importance of considering the
topological property in handling complex deformable objects
in the HRC domain.

For HRC, we analyzed our task carefully and found a pattern.
Essentially, we can solve the task by moving the robot agent to-
wards the new pose based on the transformation between the
previous and current poses on the leader side (human). By
leveraging this regularity, we propose two baseline approaches
to implement robot controllers for visual image-based robotic
deformable linear object manipulation tasks. The first approach
is to directly predict the new pose of the follower (the robot
agent) by estimating the transformation between the previous
and current poses on the leader side with leftmost k centerline
points. This is based on the regularity that the relative transfor-
mations of the leader side and follower side are identical, which
can be denoted as below:

p[ f ollower]
i = p[ f ollower]

i−1 ∗ Tp[leader]
i

p[leader]
0

Tp[leader]
i

p[leader]
j

= Tp[ f ollower]
i

p[ f ollower]
j

( j ≤ i)
(40)

where Tp[leader]
i

p[leader]
0

is the transformation of the leader side of the de-

formable linear object between time step 0 and time step i. This
transformation can be roughly estimated by the leftmost k cen-
terline points with ICP algorithms. Since this approach is sim-
ple and straightforward for solving deformable object manipu-
lation tasks, we name it Naı̈ve-C controller and its main process
is illustrated in the upper part of Fig. 8. The leftmost k center-
line points of the leader side are marked with red color (here
k = 3 for illustration). After the motion of the leader side of the
deformable linear object, the leader poses will become p[leader]

i

from p[leader]
i−1 , then Naı̈ve-C estimates a transformation Tp[leader]

i

p[leader]
0

to finally generate the desired pose for the follower side using
the Equ. 40. Nonetheless, this approach has to compute an op-
timal transformation before sending the control commands to
the manipulator, which is not quite efficient since its comput-
ing process involves an iterative calculation. Besides, it also
needs to look for an appropriate trade-off between the shape
manipulation accuracy and system response time. Because the
expansive optimization-solving process will always reduce the
system response time and perform poorly during the human-
robot interaction process. The second baseline approach is to
directly estimate the p[ f ollower]

i based on a visual observation
using PoseCNN to implement a robot controller (indicated by
PoseCNN-C) for solving the manipulation task. This approach
requires collecting a large dataset composed of a series of tu-
ples {(p0, pi, pd)}. Nevertheless, this approach solely relies on
data, and hence, lacks the ability to comprehend the impact of
the deformed shape on the behavior of the robot manipulator.
Moreover, the absence of modeling the deformable object’s ge-
ometry could potentially hinder the model’s applicability and
generalizability.
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Table 1: Performance of Latent Representation Approaches on Different Shape Categories

Category ℓ-Trust ℓ-Cont RMSE

PCA TSNE AE TAE PCA TSNE AE TAE PCA TSNE † AE TAE

Line-shaped 0.907 0.953 0.947 0.982 0.859 0.903 0.897 0.902 1.572 - 1.770 0.968
Pos. Arch-shaped 0.868 0.910 0.884 0.939 0.846 0.890 0.884 0.891 2.060 - 2.199 1.279
Neg. Arch-shaped 0.859 0.938 0.909 0.947 0.857 0.885 0.879 0.887 1.952 - 2.212 1.256
Pos. S-shaped 0.788 0.888 0.837 0.891 0.837 0.869 0.845 0.872 2.546 - 2.380 1.492
Neg. S-shaped 0.838 0.865 0.857 0.886 0.843 0.873 0.862 0.871 2.775 - 2.486 1.517
Pos. Helix 0.824 0.863 0.851 0.887 0.829 0.877 0.854 0.874 2.894 - 2.671 1.623
Neg. Helix 0.832 0.872 0.838 0.879 0.836 0.874 0.858 0.876 3.127 - 2.733 1.795

†
The absence of Root Mean Squared Error (RMSE) metric for the t-SNE method in the above table is due to two main reasons: (1) t-SNE is an unsupervised

technique used for exploration and visualization of high-dimensional data in two or three dimensions, and thus, it might not be appropriate or meaningful to
calculate RMSE for the transformed data. (2) t-SNE does not preserve distances between data points from the high-dimensional space in the lower-dimensional
space since it preserves the probability distribution of pairwise similarities of points. Hence, calculating an error metric like RMSE, which is based on distances,
might not provide a relevant or meaningful evaluation of the t-SNE transformation.
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Fig. 9: Experimental setup for reactive deformable object manipulation tasks
in the context of human-robot collaboration, which includes an elastic cable to
be co-manipulated by a stepper motor and robot end-effector (shown in (a)),
and by human hand and robot hand in (b), a depth camera D455 (eye-to-hand
configuration) to measure the object’s state in (c), a single-arm robot (UR5) to
manipulate the cable to maintain its origin shape configuration, and two differ-
ent elastic cables to be considered for validating generalizability.

6. Experiments

In this section, we detail the experimental setup used to vali-
date the efficacy of our proposed human-robot collaboration ap-
proach for the task of reactive manipulation of deformable lin-
ear objects, specifically focusing on shape servoing tasks. The
setup description is followed by an overview of the shape sen-
sory data processing pipeline, which employs a Gaussian Mix-
ture Model (GMM)-based shape state estimator. We then delve
into the implementation specifics of the latent shape representa-
tion utilizing a topological auto-encoder. We contrast its perfor-
mance with other prevalent low-dimensional representation ap-
proaches across different categories of deformable linear object
shapes. In order to replicate stable human-robot interaction dur-
ing Human-Robot Collaboration (HRC), we initially conducted
motor-robot experiments. In these experiments, the left side of
the Deformable Linear Object (DLO) was controlled by a step-
ping motor. This allowed us to compare our proposed method,
denoted as TopoLSC, with traditional methods including VS,
AutoLSC, and AutoLSC2. Following this, we replaced the
stepping motor with an actual human hand to conduct human-

robot experiments. These trials tested the real-world human-
robot collaboration performance using different methodologies.
In the human-robot experiments, we compared our proposed
method with regularity-based human-robot collaboration ap-
proaches (Naı̈ve-C and PoseCNN-C), as described in Section
5.4, as well as the ablation method (AutoLSC2). The supe-
riority of our proposed latent shape controller is substantiated
through both quantitative and qualitative measurements of vari-
ous reactive deformable object manipulation tasks. These tasks
were performed in both motor-robot and human-robot experi-
ment contexts.

6.1. Experiment Setup

Fig. 9 shows the experiment setup for our approach, where a
RealSense RGB-D camera (D455) is used to observe the de-
formable object manipulation process from a top-down per-
spective, namely, the main view. Besides, we also consider
providing a side view with a commonly used Logi RGB cam-
era (C270) to have a better overview of the entire manipulation
process from a third-person perspective. During the process,
an elastic sponge bar (viz. a deformable linear object) is ma-
nipulated with a UR-5 robot while the other end of the linear
object is controlled by a stepping motor or a human hand. Both
ends of the elastic sponge bar are connected with a 3D-printed
gripper between the robot arm or the human hand. We employ a
stepping motor to generate four standard trajectories for a quan-
titative and effortless measurement of the performance of our
proposed approach compared with other advanced approaches
(see Fig. 9(a)). Furthermore, a real-time human-robot collabo-
ration is conducted to examine the overall performance of our
proposed framework. The robotic manipulation task considered
in the context of human-robot collaboration is a shape servoing
task in a reactive manner. As shown in Fig. 9, the left side of
the deformable linear object is directly manipulated by a human
hand, and the other side is manipulated by the UR-5 robot con-
nected with a 3D printed gripper. The robot executes the action
to recover the shape of the deformable linear object in real-time
after resulting deformations caused by the human hand motions
performed on the left side of the object. In our experiments, we
set the initial configuration as our final target shape that the
robot is trying to reach in real time. For safe operation, there is
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the saturation limit for each axis direction, i.e., |ui| ≤ 0.04m/s.
The proposed algorithm is implemented on ROS/URX running
within a servo-control loop of around 20Hz. Utilizing defor-
mation error and velocity convergence as our primary metrics,
we employed grid search to refine the parameters of the Slid-
ing Mode Control (SMC). This was initiated with an estimated
set of parameters derived from several preliminary experiments.
Detailed settings for these parameters can be found in Table 6.1.
A video of the conducted experiments can be obtained from
https://sites.google.com/view/hrc-dom.

Table 2: Experimental Parameters of Fixed-time SMC
Parameter a11 a21 a31 a12 a22 a32 b11 b21 b12 b22 b3

Value 4.26 5.52 4.21 4.40 237 259 227 246 246 246 246

(a) RGBD (b) HSV (c) Point cloud (d) 3D Coordinate

Fig. 10: 3D shape processing pipeline for the reactive deformable object ma-
nipulation tasks. Fig. 10a is an aligned RGBD image frame of the working
space. Fig. 10b is to extract the deformable object region by using an appropri-
ate HSV color filter. Fig. 10c presents the point cloud of the deformable linear
object after computing with the Open3D library. Fig. 10d shows the final 3D
centerline to represent the 3D shapes of the manipulated deformable object.

6.2. Shape Estimation
In our experimental platform, the depth camera is set in an

eye-to-hand configuration (i.e., fixed pose relative to the robot)
and receives the video stream, then we compute the 3D shapes
by using the OpenCV and RealSense libraries. Fig. 10 shows
the extraction flow of the elastic cable. In the first place, the
RGB frame is aligned with the depth image by using RealSense
SDK to produce an RGBD frame as shown in Fig. 10a. Then,
we mask the deformable object region by designing an appro-
priate HSV color filter to compute the point cloud of the ma-
nipulated object based on camera parameters with the Open3D
library (see Fig. 10b). After that, a GMM-based estimator is
performed to further extract a fixed number of centerlines (Note
that the sequence is still disordered). Therefore, we define the
leftmost centerline point as the beginning point to sort the cen-
terline point set. Finally, the visual pipeline ended up with a
sequence of fixed and ordered centerline points to represent the
3D shapes of the deformable linear objects.

6.3. Validation of Latent Shape Representation
To validate the performance of the topological auto-encoder

on shape representation, we compare our Topological Autoen-
coder (TAE) with three commonly used representation learning
approaches including Principal Component Analysis (PCA), t-
distributed Stochastic Neighbor Embedding (TSNE), Autoen-
coder (AE) on various deformed shapes collected from our built
experimental setup. All shapes are stored in the format of 3D
centerline points with the visual shape estimator described in

(a) Line (b) Arch+ (c) Arch− (d) S +

(e) S − (f) Helix+ (g) Helix−

Fig. 11: Seven different shape categories to measure the latent representation
performance for the deformable linear object, namely, Line, Arch+, Arch−, S +,
S −, Helix+ and Helix− categories.

the proceeding section. After examining the collected shapes,
we classify them into five different shape categories, namely,
Line, Pos. Arch, Neg. Arch, Pos. S, Neg. S, Pos. Helix and
Neg. Helix class as shown in Fig. 11. We evaluate the recon-
struction errors between the input shape ci and reconstructed
shape ci with root mean square error (RMSE).

RMSErec = ∥ci − ci∥
2 (41)

Furthermore, to evaluate the quality of latent representations,
we also introduce another two metrics to measure the dimen-
sionality reduction quality between input data and latent codes
(as indicated by the ℓ in the abbreviations). Specifically, the first
is called trustworthiness (ℓ-Trust), which evaluates the extent to
which the k nearest neighbors of a point are conserved during
the transition from the original space to the latent space. The
second measure is called continuity (ℓ-Cont), which assesses
the degree to which neighbors are maintained during the transi-
tion from the latent space to the original space. To enable a fair
comparison, we set the same dimension (n = 16) of the latent
space for different approaches. Experimental quantitative re-
sults can be found in Table 1, the TopoAE achieves the highest
ℓ-Trust and lowest RMSE over all shape categories and shows
a large improvement over other approaches. With respect to
ℓ-Cont, the TopoAE presents a very competitive performance
compared to the TSNE representations. As can be observed,
the TopoAE not only can reconstruct the latent shapes back
into the original shape space accurately but also can preserve
the structural information on topological features in this built
latent space.

6.4. Evaluation of Motor-robot Experiments
To quantitatively analyze the performance of our proposed

sensorimotor model on reactive deformable object manipula-
tion tasks, we program a stepping motor in a fixed trajectory
to move the left side of the elastic cable. By doing so, we are
able to produce the same interaction pattern for the deformable
objects to imitate the human-robot collaboration, which is vi-
tal to fairly compare our proposed model with other advanced
solutions. In these motor-robot experiments, three advanced ap-
proaches are selected to compare with our model, one is a tradi-
tional technique for adaptively deformable object manipulation
using a model-free visual servoing [57] (referred as VS in the

xiii

https://sites.google.com/view/hrc-dom


VS

AutoLSC

TopoLSC

VS

AutoLSC

TopoLSC

VS

AutoLSC

TopoLSC

VS

AutoLSC

TopoLSC

VS

AutoLSC

TopoLSC

VS

AutoLSC

TopoLSC

VS

AutoLSC

TopoLSC

VS

AutoLSC

TopoLSC

1. Vertical Track 2. Vertical Tilt Track 3. Tilt Right Track 4.Left Track 5. Vertical Track 6. Right Track

VS

TopoLSC

AutoLSC

AutoLSC2

VS

AutoLSC

TopoLSC

VS

AutoLSC

TopoLSC

VS

AutoLSC

TopoLSC

VS

AutoLSC

TopoLSC

VS

AutoLSC

TopoLSC

VS

AutoLSC

TopoLSC

VS

AutoLSC

TopoLSC

VS

AutoLSC

TopoLSC

𝐻𝑒𝑙𝑖𝑥!𝐻𝑒𝑙𝑖𝑥!𝐿𝑖𝑛𝑒𝑆"𝐴𝑟𝑐ℎ"‡𝐴𝑟𝑐ℎ"!

(a) Qualitative experimental results in motor-robot experiments.
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Fig. 12: Qualitative and quantitative results in motor-robot experiments. (a) shows qualitative results of six motor-robot experiments (Vertical Track + Arch†− ,
Vertical Tilt Track + Arch‡− , Tilt Right Track + S −, Left Track + Line, Vertical track + Helix+, and Right track + Helix+) by using three different approaches, where
red arrows represent the motion direction of the motor (first rows), red, yellow, and green points represent the current, initial, and ground truth centerline points of
the deformable linear object co-manipulated by the motor and robot, respectively. (b)-(g) and (h)-(m) show quantitative results of deformation error ed and velocity
curve along the x, y, and z-axis within the world frame in corresponding motor-robot experiments, respectively.
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Table 3: Performance of Different Sensorimotor Models on Different Tasks for Motor-robot Experiments

Method Shape Accuracy (cm) Response Time (ms)

Case (a) Case (b) Case (c) Case (d) Case (e) Case (f) Case (a) Case (b) Case (c) Case (d) Case (e) Case (f)

VS [57] 3.65 ± 0.07 3.15 ± 0.09 3.74 ± 0.06 3.90 ± 0.03 4.92 ± 0.08 5.25 ± 0.09 120 ± 52 197 ± 59 113 ± 63 124 ± 41 184 ± 68 192 ± 77
AutoLSC [58] 1.81 ± 0.73 2.21 ± 0.65 1.86 ± 0.59 2.76 ± 0.74 3.13 ± 1.07 3.26 ± 1.29 87 ± 34 82 ± 22 83 ± 28 77 ± 21 89 ± 33 93 ± 35
AutoLSC2 0.68 ± 0.44 0.71 ± 0.36 0.67 ± 0. 46 0. 55 ± 0.33 1.05 ± 0.56 1.11 ± 0.62 55 ± 13 56 ± 20 60 ± 16 52 ± 12 57 ± 19 60 ± 18
TopoLSC (Ours) 0.44 ± 0.09 0.35 ± 0.06 0.42 ± 0.07 0.47 ± 0.08 0.56 ± 0.12 0.59 ± 0.11 47 ± 12 46 ± 8 43 ± 9 45 ± 13 49 ± 14 52 ± 17

following), and the other is a latent shape control (LSC) [58]
model with naive auto-encoder (AutoLSC). To measure the
performance of different approaches in the context of human-
robot collaboration, we designed two metrics to measure and
analyze the model performance: (1) shape accuracy during
the entire human-robot collaboration process; (2) the response
time of the manipulator starting to deform the shape after each
leader’s action. The shape accuracy is defined as the RMSE
between the current shape ci and its desired target shape c∗i as
below:

RMSEdom =
∥∥∥ci − c∗i

∥∥∥2
(42)

where the desired target shape is computed based on the trans-
formation Tpt

p0 between the beginning leader pose p0 and current
leader pose pt. As for the system response time, we intend to
include both the time required for computing the desired latent
shape vector and the control action using our method (com-
putation time), and the time required for the control action to
take effect (controller response time). We opted not to sepa-
rate computation time from system response time in our assess-
ments. This decision was made as our aim was not to provide
an absolute measure of performance, but instead to facilitate a
relative comparison among various methods under analogous
conditions. By calibrating the transformation between the step-
ping motor device and the robot base, the current leader pose
pt is easy to obtain in the global coordinate system. Finally, the
desired target shape is obtained as below:

c∗i = c0 ∗ Tpt
p0 (43)

where c0 is the beginning shape of the deformable object repre-
sented as the centerline points.

Table 3 and Fig. 12 show the quantitive and qualitative per-
formance comparison of different sensorimotor models on var-
ious tasks for motor-robot experiments, respectively. The per-
formance is measured in terms of Shape Accuracy (in cm) and
Response Time (in ms) for six different cases, namely, 1) Ver-
tical Track for shape Arch†−; 2) Vertical Tilt Track for Arch‡−;
3) Tilt Right Track for S −, 4) Left Track for Line, 5) Vertical
Track for Helix† and 6) Vertical Track for Helix−. We ran 10
experiments for each different experimental shape case. From
the table, it is evident that our proposed method,TopoLSC,
consistently outperforms other methods, including VS, Au-
toLSC, and AutoLSC2, across all cases in terms of Shape Ac-
curacy. In all cases, TopoLSC produced the lowest shape er-
ror, thereby indicating its superior precision in preserving the
shape during manipulation tasks. For instance, in Case (a), the
Shape Accuracy of TopoLSC was 0.44 ± 0.09 cm, compared

to 3.65 ± 0.07 cm, 1.81 ± 0.73 cm, and 0.68 ± 0.44 cm for VS,
AutoLSC, and AutoLSC2, respectively. In terms of Response
Time, TopoLSC also exhibits competitive performance. While
the AutoLSC2 method has the shortest response time in some
cases, TopoLSC performs comparably well. For example, in
Case (a), the response times for TopoLSC and AutoLSC2 were
47 ± 12 ms and 55 ± 13 ms, respectively. In conclusion, the
TopoLSC method outperforms other methods in terms of Shape
Accuracy across all cases and shows competitive performance
in Response Time. This indicates that our proposed method
can effectively and efficiently manipulate deformable linear ob-
jects in motor-robot experiments, proving its efficacy and ro-
bustness. The results validate the advantage of using a topo-
logical latent shape representation in sensorimotor models for
deformable object manipulation tasks.

6.5. Evaluation of Human-Robot Experiments

To further measure the overall performance of our proposed
approach, a series of human-robot experiments are also con-
ducted on various reactive shape manipulation tasks. Table 4
and Fig. 13 show the quantitative and qualitative performance
comparison of different human-robot collaboration approaches
(namely, Naı̈ve-C, PoseCNN-C, and TopoLSC) on six reac-
tive shape servoing tasks. Similarly, the performance is eval-
uated based on the same metrics: Shape Accuracy (measured
in cm) and Response Time (measured in ms), we ran 10 tri-
als for each task, and for each task, the Shape Accuracy and
Response Time are given as a mean value plus/minus a stan-
dard deviation, which indicates the average performance and
variability of each method for each task. Looking at the Shape
Accuracy, we can see that the TopoLSC method outperforms
the other methods in all six tasks, with the lowest average er-
rors ranging from 0.72 cm to 1.23 cm. The AutoLSC2 method
comes in second, followed by the PoseCNN-C, and finally the
Naı̈ve-C method with the highest average shape accuracy er-
rors. Although AutoLSC2 demonstrates competitive perfor-
mance on simpler tasks (Task 1-4), it underperforms compared
to our TopoLSC approach on more complex helix shape servo-
ing tasks (Task 5 and 6). This is primarily due to AutoLSC2’s
insufficient representation of the interconnected structure and
overall shape. Naı̈ve-C, in contrast, performs the worst out of
all, as it only considers the leftmost k points to compute the
transformation. This approach fails to provide a comprehen-
sive understanding of the entire deformable object shape, lead-
ing to poorer performance. When comparing the performance
of TopoLSC in human-robot interactions to its performance in
motor-robot experiments, a relative decrease is observed. This
is likely because human-robot interactions are more dynamic
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(a) Qualitative experimental results in human-robot experiments.
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Fig. 13: Qualitative and quantitative results in human-robot experiments. (a) shows qualitative results of six human-robot experiments (S −, Arch†− , Arch‡− , Arch+,
Helix+, and Helix+) by using different overall frameworks, where red arrows represent the motion direction of motor (first rows), red, yellow and green points
represent the current, initial, and ground truth centerline points of the deformable linear object co-manipulated by the human hand and robot, respectively. (b)-(g)
and (h)-(m) show quantitative results of deformation error ed and velocity curve along the x, y, and z-axis within the world frame in corresponding human-robot
experiments, respectively.
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Table 4: Performance of Different Frameworks on Different Human-robot Experiments.

Method Shape Accuracy (cm) Response Time (ms)

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

Naı̈ve-C 4.26 ± 2.41 5.52 ± 2.99 4.21 ± 2.69 4.40 ± 2.43 4.68 ± 2.27 4.39 ± 2.56 237 ± 83 259 ± 108 227 ± 87 246 ± 93 237 ± 97 241 ± 102
PoseCNN-C 3.37 ± 1.21 3.78 ± 1.94 3.68 ± 2.02 3.52 ± 2.38 3.94 ± 2.83 3.81 ± 2.49 32 ± 11 33 ± 9 18 ± 13 17 ± 14 28 ± 14 31 ± 12
AutoLSC2 1.33 ± 0.17 1.54 ± 0.22 1.49 ± 0.17 1.65 ± 0.18 2.37 ± 0.58 2.50 ± 0.49 45 ± 11 51 ± 14 51 ± 9 52 ± 12 59 ± 14 58 ± 11
TopoLSC (Ours) 0.72 ± 0.10 1.23 ± 0.17 0.90 ± 0.12 0.95 ± 0.19 1.09 ± 0.24 0.98 ± 0.16 44 ± 10 49 ± 13 51 ± 12 47 ± 12 53 ± 10 58 ± 17

and unpredictable, whereas motor-robot experiments tend to of-
fer more stable interactions. Similarly, in terms of Response
Time, the PoseCNN-C method has the fastest response times
across all tasks, with average times ranging from 17 ms to 33
ms. The TopoLSC and AutoLSC2 methods have compara-
ble response times, both significantly faster than the Naı̈ve-C
method, which has the longest response times, ranging from
237 ms to 259 ms.

In conclusion, the TopoLSC method offers the best balance
between shape accuracy and response time, making it the most
efficient method for these human-robot interaction tasks. Al-
though the PoseCNN-C method has faster response times, its
shape accuracy is not as good as the TopoLSC or AutoLSC2
methods. Conversely, while the Naı̈ve-C method is less effi-
cient in both metrics, it might still be useful in scenarios where
computational resources or time are not limiting factors. As
for the ablation study, from the above two tables, it can be ob-
served that AutoLSC2 has a performance similar to our pro-
posed approach in terms of Response Time, as both utilize
the same fixed-time sliding mode controller for DOM tasks in
HRC. However, in terms of Shape Accuracy, our method con-
sistently outperforms AutoLSC2. Although the advantage is
minor in the motor-robot experiments, the Shape Accuracy im-
provement is significant in human-robot experiments. This can
be attributed to the more dynamic and unpredictable nature of
human-robot interactions, where our TopoLSC better handles
the unpredictability due to its use of a topological representa-
tion. This representation captures the connectivity and struc-
ture of the objects’ shapes more effectively. Specifically, in
more complex shape servoing tasks of helix shape categories
in human-robot experiments (Tasks 5 and 6), our method main-
tains a stable and high shape accuracy, indicating superior gen-
eralization ability and performance when dealing with complex
deformable shapes.

6.6. Limitations

While the proposed human-robot collaboration approach
for reactive deformable linear object manipulation tasks using
topological latent control models shows promise, there are sev-
eral limitations that need to be considered. Firstly, the effective-
ness of the proposed approach is highly dependent on the accu-
racy of the perception system. Any inaccuracies or delays in the
perception system can lead to incorrect control signals being
generated, which can result in suboptimal manipulation perfor-
mance. Secondly, the proposed approach is specifically tailored
for the manipulation of deformable linear objects and does not
inherently consider the morphing of shapes from one class to
another. Notably, our current system and study are primarily

focused on a visual shape servoing task. Our present robotic
system may not be equipped to seamlessly handle such a tran-
sition, thus limiting the scope of its application. Thirdly, while
our approach is effective for certain types of objects, it may not
be suitable for all deformable object manipulation applications.
For instance, in surgical robotics, the manipulation of soft tissue
may necessitate a different perception approach. Another layer
of complexity is added through the use of human-robot collab-
oration. This introduces additional challenges, such as the need
for effective communication and coordination between the hu-
man operator and the robot. Moreover, the system may be sen-
sitive to differences in human expertise, which may affect the
quality of the manipulation performance. In summary, although
our approach has demonstrated potential for achieving real-time
reactive manipulation of deformable linear objects through the
use of topological latent control models and human-robot col-
laboration, further research is required. This should aim to ad-
dress the identified limitations and explore the applicability of
our method to other types of deformable objects and a broader
range of real-world scenarios.

It’s important to note that in the human-robot collaboration
literature, the focus is predominantly on the manipulation of
rigid objects. This allows for easier modeling of the relation-
ship between human movements and their effects on manipu-
lated objects. However, when dealing with deformable objects
like in our case, the task becomes significantly more challeng-
ing due to the infinite degrees of freedom and complex dynam-
ics associated with these objects. As a result, it becomes diffi-
cult to formulate a precise model of such behavior. In our work,
the robotic system is designed to focus more directly on the per-
ception and manipulation of the deformable object. This focus,
while necessary for the success of our tasks, may have inadver-
tently caused the human aspect to appear less prominent in our
study. While our current study was limited in this respect, we
plan to include a diverse range of human subjects in our future
work.

7. Conclusion

In conclusion, this article presents an innovative approach
to address the challenge of deformable object manipulation in
human-robot collaboration scenarios. The proposed Topologi-
cal Latent Control Model (TopoLSC) enables the robot to learn
a low-dimensional representation of the deformable object, al-
lowing the controller to reactively adapt its manipulation strat-
egy in real time based on the human partner’s behavior. The ex-
perimental results demonstrate the effectiveness of the proposed
approach in achieving accurate and efficient manipulation of
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deformable linear objects while maintaining high shape accu-
racy and low response time between the human and the robot.
We also provide a comprehensive analysis of the system’s per-
formance and robustness under different scenarios and condi-
tions. Overall, this paper provides a significant contribution to
the field of human-robot collaboration, especially in the domain
of deformable object manipulation. The proposed approach has
the potential to enable more complex and versatile collabora-
tive tasks between humans and robots, where the robots can
learn to reactively manipulate an object based on the human
partner’s actions and adapt their behavior accordingly. Future
research could concentrate on broadening the application of this
approach to encompass a wider variety of deformable objects
and human movements. Additionally, the exploration of its po-
tential in applying deformable object manipulation techniques
in more human-robot collaboration tasks could prove fruitful.
Importantly, a key focus should be on assessing the viability
and impact of this approach within real-world scenarios.
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visual shape tracking and servoing for isometrically deforming objects,
in: 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2020, pp. 7542–7549.

[23] M. H. D. Zakaria, M. Aranda, L. Lequièvre, S. Lengagne, J. A. C. Ramón,
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