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Abstract—In this paper, an integrated path planning and tube-
following control scheme is proposed for collision-free navigation
of a wheeled mobile robot (WMR) in a compact convex workspace
cluttered with sufficiently separated spherical obstacles. An ana-
lytical path planning algorithm is developed based on Bouligand’s
tangent cones and Nagumo’s invariance theorem, which enables
the WMR to navigate towards a designated goal location from
almost all initial positions in the free space, without entering
into augmented obstacle regions with safety margins. We further
construct a virtual “safe tube” around the reference trajectory,
ensuring that its radius does not exceed the size of the safety
margin. Subsequently, a saturated adaptive controller is designed
to achieve safe trajectory tracking in the presence of disturbances.
It is shown that this tube-following controller guarantees that
the WMR tracks the reference trajectory within the predefined
tube, while achieving uniform ultimate boundedness of both the
position tracking and parameter estimation errors. This indicates
that the WMR will not collide with any obstacles along the way.
Finally, we report simulation and experimental results to validate
the effectiveness of the proposed method.

Index Terms—Tube-following control, adaptive control, path
planning, robot navigation, wheeled mobile robots.

I. INTRODUCTION

THE path planning and control of wheeled mobile robots
(WMRs) is an important problem in robotics due to

the extensive real-world applications that these systems have,
such as cargo transportation, exploration of hazardous environ-
ments, automated patrolling [1], to name a few cases. In prac-
tical applications, WMRs usually operate in obstacle-cluttered
environments, which limits the implementation of traditional
motion control methods, thus, motivates the development of
collision-free navigation algorithms that can steer WMRs from
an initial position to a target goal without colliding with any
obstacles along the way [2]. Collision-free robot navigation
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has garnered significant attention from the robotics and control
research communities [3].

Existing solutions to the collision-free navigation problem
of robots can be primarily classified into two categories [4]:
global (map-based) methods and local (reactive) methods. The
former relies on global knowledge of the environment, requir-
ing a priori information about the obstacles (e.g., position and
shape). In contrast, the latter utilizes only local knowledge
of obstacles in the immediate vicinity of the robot, obtained
from on-board sensors. Among the global methods, a simple
and computationally efficient solution is the artificial potential
field (APF)-based approach [5], which uses a field of virtual
potential forces to push the robot towards a target position
and pull it away from obstacles; Representative APF-based
methods can be found in [6]–[8] and references therein. These
kind of methods often reach local minima, which hinders
achieving global convergence to a designated goal (especially
in topologically complex settings). Although navigation func-
tions developed in [9] can help to deal with this problem, they
come with extra drawbacks, such as the need for unknown
tuning of parameters. Other global methods for collision-free
navigation are e.g., heuristic approaches like A⋆ [10], [11],
rapidly exploring random tree (RRT) [12], genetic algorithms
[13], etc. As most of them are search-based solutions, their
performance can be significantly affected by the scale of
the problem [14]. Optimization-based methods [15], while
providing alternatives, typically rely on numerical solutions of
the constrained optimization problems that result on heavily
computational costs. Both the search-based and optimization-
based methods are inherently open loop, which makes them
vulnerable to disturbances and sensor noise. Thus, the actual
robot trajectory may deviates from the desired path, hence,
risking collisions with the environment.

Local methods that offer reactive solutions for collision-free
robot navigation are highly desirable in practice. Particularly
in autonomous exploration applications, where WMRs often
have limited access to global information and must rely on
local sensory data to detect obstacles and perform navigate.
Bug algorithms that evolved from maze solving algorithms
are one of the simplest reaction navigation approaches for
mobile robots in planar environments [16], [17]. Lionis et
al. [18] proposed locally computable navigation functions for
robotic navigation in unknown sphere worlds. Filippidis and
Kyriakopoulos [19] introduced adjustable navigation functions
that are capable of autonomously tuning parameters when new
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obstacles are discovered. Paternain and Ribeiro [20] provided
a stochastic extension of these navigation functions with
provable convergence properties. However, one caveat is that
these reactive function-based methods also suffer from local
minima [4]. Arslan and Koditschek [21] proposed a sensor-
based reactive method based on a robot-centric spatial decom-
position for collision-free navigation with convex obstacles.
Huber et al. [22] adopted contraction-based dynamical systems
theory to achieve a closed-form solution to the avoidance of
moving obstacles. Recently, reinforcement learning methods
were used in [23], however, the learning process requires a
substantial amount of interaction with the real world. Note
that although most of the aforementioned reactive approaches
are closed-form, they only consider nominal (holonomic or
non-holonomic) robot kinematics, without taking into ac-
count disturbances/uncertainties that may arise from external
forces, modeling errors, inaccurate controls, sensor noise, data
dropout, etc. These unknown actions/terms inevitably degrade
the system’s performance, potentially leading to deviations of
the desired trajectory, thus, jeopardizing the robot’s safety.

In this paper, we study the collision-free navigation problem
of differential-drive WMRs operating in a compact convex
workspace cluttered with multiple sufficiently separated spher-
ical obstacles. To overcome the non-holonomic constraints
inherent in this type of systems, an off-center point is selected
as the virtual control point, enabling to transform the original
non-holonomic kinematics into a fully-actuated two degrees-
of-freedom system [24], [25]. Building upon this model,
we propose a novel robot navigation scheme that integrates
a path planner and a tube-following controller. By “tube-
following” it is meant that the tracking trajectory of the WMR
should remain within a virtual safe tube around the reference
trajectory to ensure its motion safety. The proposed method
can achieve collision-free navigation in cluttered environments
from almost all initial configurations in the robot’s free space
despite the presence of disturbances. To the best of the authors’
knowledge, this is the first time an integrated path planning
and tube-following control scheme is proposed for safe robot
navigation in cluttered environments. The effectiveness of the
proposed method is validated through numerical simulations
and experiments. Specifically, the original contributions of the
paper are two-fold:

1) Inspired by [4], a safe path planner is presented based on
Bouligand’s tangent cones [26] and Nagumo’s invariance
theorem [27], yielding a continuous saturated vector field
that can guide the WMR from almost all initial positions in
the free space towards a designated goal, without entering
into the augmented obstacle regions with safety margins. In
essence, the proposed planning algorithm is sensor-based,
and the vector field can be generated in real-time using only
the local sensing information (i.e., the distance between the
WMR and the obstacle boundaries).

2) We propose an adaptive tube-following control method that
defines a virtual safe tube around the reference trajectory
with its radius no larger than the size of the safety margin.
It is shown that the derived controller ensures the tracking
of the reference trajectory within the predefined safe tube,

while achieving uniform ultimate boundedness of both the
trajectory tracking and parameter estimation errors, despite
the presence of disturbances. By design, the chosen tube
radius ensures that the WMR’s trajectory never enters into
the actual obstacle regions, thus achieving the collision-free
robot navigation in the perturbed conditions.

The remainder of the paper is organized as follows: Sec.
II describes the kinematics and operating environment of the
WRM, and formulates the robot navigation problem; Sec. III
proposes an integrated path planning and tube-following con-
trol strategy for collision-free robot navigation, accompanied
by rigorous stability analyses; Sec. IV and V present the
simulation and experimental results, respectively. Finally, Sec.
VI gives concluding remarks and future work.

Notations: Throughout the paper, Rn is the n-dimensonal
Euclidean space, Rm×n is the vector space of m × n real
matrices, and In is a n × n unit matrix. | · | is the absolute
value, and ∥·∥ denotes either the Euclidean vector norm or the
induced matrix norm. The topological interior and boundary of
a subset A ⊂ Rn are denoted by int(A) and ∂A, respectively,
while the complement of A in Rn is denoted by ∁A. Given
two non-empty subsets A,B ⊂ Rn, dA(x) := inf{∥x − y∥ |
y ∈ A} denotes the distance of a point x ∈ Rn to the set A,
and d(A,B) := inf{∥a − b∥ | a ∈ A, b ∈ B} denotes the
distance between A and B.

II. PROBLEM STATEMENT

A. Kinematics of wheeled mobile robots

In this paper, we consider a nonholonomic wheeled mobile
robot (WMR) with a control point P̄ located at the midpoint
of the axis connecting the two driving wheels, as depicted in
Fig. 1. Let x̄ := [x̄, ȳ]⊤ ∈ R2 be the position vector of P̄
in the global coordinate frame, and θ̄ be the WMR’s heading
angle. The kinematic model of the WMR is expressed as ˙̄x

˙̄y
˙̄θ

 =

cos θ̄ 0
sin θ̄ 0
0 1

 (u+ ud), (1)

where u := [v, ω]⊤ ∈ R2 is the the control input vector with
v and ω being the linear and angular velocities of the WMR,
respectively, and ud ∈ R2 is the matched disturbance that may
arise from control errors, sensor noise, etc.

Wheels’ axis P



v

xy

Passive wheel

r

Virtual control

point

x

x

Driving wheelP

Circumscribed circle centered 

at the point P

Fig. 1. Sketch of the wheeled mobile robot.
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To facilitate the subsequent design and analysis, we select
an off-center point P as the virtual control point, which locates
at a distance ℓ ̸= 0 away from P̄ along the longitudinal axis
of the WMR [24], [25], as shown in Fig. 1. Denote by x :=
[x, y]⊤ ∈ R2 and θ the position and heading angle of P ,
respectively. We have the following change of coordinates:

x := x̄+ ℓ cos θ,

y := ȳ + ℓ sin θ,

θ := θ̄.

(2)

In view of (1) and (2), the kinematics of x is given by

ẋ = R(θ)(u+ ud), (3)

where R(θ) ∈ R2×2 is defined as

R(θ) :=

[
cos θ −ℓ sin θ
sin θ ℓ cos θ

]
, (4)

which is full rank. By setting |ℓ| ≤ 1, it follows that ∥R(θ)∥ =
max{1, |ℓ|} = 1 and ∥R−1(θ)∥ = max{1, 1/|ℓ|} = 1/ℓ.

Assumption 1. The disturbance ud is bounded by an unknown
constant d = supt≥0 ∥ud(t)∥, that is, ∥ud∥ ≤ d.

Remark 1. The full rank of R(θ) enables us to freely control
the position of the WMR (specifically, the virtual control point
P ) without being restricted by nonholonomic constraints.

B. Operating environment

Consider a WMR operating inside a closed compact convex
workspace W∗ ⊂ R2, punctured by a set of n ∈ N obstacles
O∗

i , i ∈ I := {1, 2, ..., n}, which are represented by open balls
with centers ci ∈ R2 and radii ri > 0. A circumscribed circle
centered at P with radius r > 0 is constructed, which is the
smallest circle enclosing the WMR (see Fig. 1). To ensure that
the WMR can navigate freely between any of the obstacles in
W∗, we make the following assumption:

Assumption 2. The n obstacles are separated from each other
by a clearance of at least

d(O∗
i ,O∗

j ) > 2(r + h), ∀i, j ∈ I, i ̸= j, (5)

and from the boundary of the workspace W∗ as

d(O∗
i , ∂W∗) > 2r + h, ∀i ∈ I, (6)

where h > 0 is a constant.

For ease of design, the WMR is considered as a point (i.e.,
the virtual control point P ), by transferring the volume of the
circumscribed circle to the other workspace entities. Then, for
the point P , the workspace is defined as

W := {x ∈ R2 | d∁W∗(x) ≥ r}, (7)

and the obstacle regions are defined as the following pairwise
disjoint spherical subsets of R2:

Oi := {x ∈ R2 | βi(x) < 0}, i ∈ I, (8)

where βi(x) := ∥x − ci∥ − (r + ri). Thus, the free space of
P is given by the closed set X := W \O with O := ∪n

i=1Oi.
To enhance the safety, a safety margin of size 0 < ϵ < h is

introduced (see the light blue regions in Fig. 2), which results
in an eroded workspace Wϵ := {x ∈ R2 | d∁W∗(x) ≥ r + ϵ}
and n augmented obstacle regions Oϵ

i := {x ∈ R2 | βi(x) <
ϵ}, i ∈ I. By doing so, the free space of P reduces to Xϵ :=
Wϵ \ Oϵ with Oϵ := ∪n

i=1Oϵ
i .

Tangent cone

Safety margin

Fig. 2. Schematic diagram of the operating environment. The dark gray balls
denote the obstacles O∗

i , i ∈ I, the light gray regions denote the augmented
workspace boundary and obstacles, whereas the light blue regions denote the
safety margin.

C. Problem formulation

The collision-free navigation problem for the WMR is now
formulated as follows:

Problem 1. Consider the WMR kinematics (3) under Assump-
tions 1 and 2. The objective is to develop a control law u
that derives the virtual control point P from almost all initial
configurations x(0) ∈ Xϵ to a designated goal x∗ ∈ int(Xϵ),
without colliding with any obstacles along the route.

III. MAIN RESULTS

To solve Problem 1, we propose a closed-form robot naviga-
tion scheme that integrates a path planner and a tube-following
controller. The block diagram of this scheme is depicted in Fig.
3. The path planner explicitly considers the safety margin and
generates a collision-free reference trajectory xd in the free
space X ϵ, using tangent cones and the well-known Nagumo’s
invariance theorem. In the control module, an adaptive tube-
following controller is designed to track the planned trajectory
in the presence of unknown disturbances, while ensuring that
the position x of P stays within a predefined tube around the
reference trajectory xd. Under this framework, if the radius of
the tube is set less than the width ϵ of the safety margin, then
the actual motion trajectory of x will remain within the set
X , thus achieving safe robot motions.

A. Preliminaries

The definition of tangent cones and Nagumo’s theorem that
are necessary for collision-free path planning are given.

Definition 1 (Bouligand’s tangent cone [26]). Given a closed
set F ∈ Rn, the tangent cone to F at a point x ∈ Rn is the
subset of Rn defined by

TF (x) :=

{
z ∈ Rn | lim inf

τ→0+

dF (x+ τz)

τ
= 0

}
.
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Path 
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Adaptive tube-

following controller
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kinematics
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Environment Tube constraints DisturbanceDisturbance

Fig. 3. Block diagram of the collision-free navigation scheme.

The tangent cone TF (x) is a set that contains all the vectors
pointing from x inside or tangent to F , while for x /∈ F ,
TF (x) = ∅. Since for all x ∈ int(F), we have TF (x) = Rn,
the tangent cone TF (x) is non-trivial only on the boundary
∂F . Next, we recall the Nagumo’s invariance theorem.

Theorem 1 (Nagumo 1942 [27]). Consider the system ẋ(t) =
f(x(t)) and assume that it admits a unique solution in forward
time for each initial condition x(0) in an open set O. Then,
the closed set F ⊂ O is forward invariant iff

f(x) ∈ TF (x), ∀x ∈ F . (9)

An intuitive interpretation of Nagumo’s theorem is that if the
vector field f(x) points inside or is tangent to the set F at each
point x ∈ F , then F is forward invariant. As stated earlier,
TF (x) is non-trivial only on ∂F , thus it is only necessary to
check (9) for the boundary points.

Lemma 1. Given any constant b > 0, the following inequali-
ties hold for all 0 ≤ q < b:

q

b
≤ ln

b

b− q
≤ q

b− q
.

Proof. Define two functions h1(q) := q/(b− q)− ln(b/(b−
q)) and h2(q) := ln(b/(b−q))−q/b. After simple calculations,
it follows that

∂h1(q)

∂q
=

q

(b− q)2
≥ 0,

∂h2(q)

∂q
=

q

b(b− q)
≥ 0,

for all 0 ≤ q < b. Hence, hi(q), i = 1, 2 are nondecreasing
functions of q, and hi(q) ≥ hi(0) = 0 for all 0 ≤ q < b. The
latter implies that Lemma 1 holds. □

B. Path planing based on tangent cones

Based on Bouligand’s tangent cones and Nagumo’s theorem,
a safe path planning approach is proposed, which can guide the
virtual control point P towards the goal x∗ (motion-to-goal)
from almost1 all initial conditions x(0) ∈ Xϵ, while ensuring
forward invariance of the free space Xϵ (collision avoidance).
We neglect the disturbance ud in (3) and consider a control
law of the following form

u = R−1(θ)τ , (10)

1The free space Xϵ is a non-contractible space, for which the topological
obstruction precludes the possibility of any continuous vector fields achieving
global asymptotic stability. The basin of attraction of the desired equilibrium
must generally exclude at least a set of measure zero.

Fig. 4. The resulting smooth navigation trajectories maintains a safety margin
of size ϵ (light blue regions) from the workspace boundary and obstacles. The
dashed circles denote the influence regions from each obstacle. Moreover, the
orange points are the unstable stationary points associated with each obstacles.

where τ ∈ R2 is a virtual control law to be designed. Then,
substituting (10) into (3), one gets

ẋ = τ . (11)

According to Nagumo’s theorem, it is sufficient to address the
collision-free path planning problem by solving the following
constrained optimization problem

min
τ

∥τ − κ0(x)∥,

s.t. τ ∈ TXϵ
(x), ∀x ∈ Xϵ,

(12)

where κ0(x) is a nominal control law for motion-to-goal and
is designed here as the following smooth function:

κ0(x) = −k0(x)(x− x∗), (13)

with k0(x) > 0 given by

k0(x) :=
α√

∥x− x∗∥2 + β2
, (14)

where α and β are positive design constants. From (13) and
(14), it follows that ∥κ0(x)∥ ≤ α, which allows us to generate
a saturated nominal vector field. The problem (12) is clearly a
nearest point problem, which has an explicit solution that will
be demonstrated in the following.

The robot workspace W∗ is a convex set, so does Wϵ, which
together with the fact that x∗ ∈ int(Xϵ) suggests that for all
x ∈ ∂Wϵ, κ0(x) points inside the free space Xϵ (i.e., κ0(x) ∈
TXϵ(x)) and thus is a solution to (12). Moreover, for all x ∈
int(Xϵ), it follows that κ0(x) is also the solution to (12). Next
we check the obstacle boundary points x ∈ ∂Oϵ. As ∂Oϵ is
a smooth hypersurface of R2, which is orientable, there exists
a continuously differentiable map (known as the Gauss map
[28]) n : ∂Oϵ → S1 such that for all x ∈ ∂Oϵ, n(x) is the
outward unit normal vector to ∂Oϵ. As clearly seen in Fig. 2,
the tangent cone at any x ∈ ∂Oϵ is a half-space

TXϵ
(x) := {y ∈ R2 | (y − x)⊤n(x) ≤ 0}, (15)

which is a convex function. Thus, (12) has a unique solution.
Based on the above argument, it is known that if x ∈ Xϵ\∂Oϵ

or x ∈ ∂Oϵ and κ⊤
0 (x)n(x) ≤ 0, then κ0(x) is a solution to

(12). On the other hand, if x ∈ Oϵ and κ⊤
0 (x)n(x) > 0, the
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closest point of (12) is obtained by the orthogonal projection
Q(n(x)) := I2 − n(x)n⊤(x) onto the tangent hyperplane of
∂Xϵ, defined by H∂Xϵ(x) := {y ∈ R2 | (y − x)⊤n(x) = 0}.
Then, a general solution to (12) is as follows:

τ (x) =


κ0(x), if dO(x) > ϵ or

κ⊤
0 (x)n(x) ≤ 0,

Q(n(x))κ0(x), if dO(x) = ϵ and

κ⊤
0 (x)n(x) > 0.

(16)

By inspecting (16), we find that the resulting vector field is
discontinuous at some boundary points x ∈ ∂Oϵ like P1−P4

in Fig. 2. To address this issue, a continuous version of (16) is
proposed in the sequel. Following the line of [4], we specify
an influence region for each obstacle (marked by the dashed
line in Fig. 4), which is defined as {x ∈ R2 | dOi

(x) ≤ ϵ∗},
where ϵ∗ ∈ (ϵ, h] and i ∈ I. Obstacle avoidance is activated
only when the position x of P enters the influence regions of
obstacles. To proceed, a bearing vector is defined as

b(x) :=
P∂O(x)− x

∥P∂O(x)− x∥
=

P∂O(x)− x

dO(x)
. (17)

for all x with ϵ ≤ dO(x) ≤ ϵ∗. Since d(O∗
i ,O∗

j ) > 2(r + h),
∀i, j ∈ I, i ̸= j (referring to (5) in Assumption 2) and ϵ∗ ≤ h,
there can be only one obstacle Oi, i ∈ I such that dO(x) =
dOi

(x) ≤ ϵ∗. With this in mind, b(x) in (17) can be computed
by b(x) = (ci−x)/∥ci−x∥. Note that when x ∈ ∂Oϵ, b(x)
is equivalent to the Gauss map n(x).

Now the control law (16) is modified as

τ (x) =


κ0(x), if dO(x) > ϵ∗ or

κ⊤
0 (x)b(x) ≤ 0,

Π(x)κ0(x), if dO(x) ≤ ϵ∗ and

κ⊤
0 (x)b(x) > 0,

(18)

with
Π(x) := I2 − ϕ(dO(x))b(x)b⊤(x), (19)

where ϕ(dO(x)) ∈ R is a C1 bump function that smoothly
transitions from 1 to 0 on the interval dO(x) ∈ [ϵ, ϵ∗], that is
to say, its first derivatives equal to zero at the endpoints of the
interval [ϵ, ϵ∗]. A simple choice of ϕ(dO(x)) is

ϕ(dO(x)) =


1, if dO(x) ≤ ϵ,

λ(dO(x)), if ϵ < dO(x) < ϵ∗,

0, if dO(x) ≥ ϵ∗,

(20)

with

λ(dO(x)) =
1

2

[
1− cos

(
π
ϵ∗ − dO(x)

ϵ∗ − ϵ

)]
. (21)

One can verify that ϕ(ϵ) = 1, ϕ(ϵ∗) = 0, and

dϕ(dO(x))
ddO(x)

∣∣∣∣
dO(x)=0 or ϵ∗

= 0.

Since the nominal control law, κ0(x), the bearing vector,
b(x), and the bump function, ϕ(dO(x)), are continuously dif-
ferentiable, the resulting control law τ (x) in (18) is continuous
and piecewise continuously differentiable on the domain X . It
is not differentiable only at those points satisfying dO(x) ≤ ϵ∗

and κ⊤
0 (x)b(x) = 0. Now the main result of the path planning

problem is summarized in the following theorem.

Theorem 2. Consider the single-integrator kinematics defined
by (11). Given that x∗ ∈ int(Xϵ) and the obstacles O∗

i , i ∈ I
satisfying Assumption 2, the continuous control law (18) with
κ0(x) given by (13) can guarantee that:

1) The free space Xϵ in (7) is forward invariant.
2) For any x(0) ∈ Xϵ, the kinematics (11) admits a unique

solution in forward time, which asymptotically converges
to the set {x∗} ∪n

i=1 Si with Si given by

Si :=

{
x ∈ Xϵ

∣∣∣∣dOi(x) = ϵ,
κ⊤
0 (x)b(x)

∥κ0(x)∥
= 1

}
. (22)

3) The undesired stationary points si ∈ Si, associated with
obstacles Oi, are locally unstable and only have a stable
manifold of measure zero.

4) The equilibrium point x = x∗ is almost globally asymp-
totically stable and locally exponentially stable.

Proof. The proof is relegated to Appendix. □

Remark 2. The proposed safe path planning scheme offers an
analytical solution and thus is computationally much more ef-
ficient than the optimization-based methods. Moreover, unlike
the navigation functions, the scheme can achieve almost global
asymptotic convergence without requiring unknown parameter
tuning, making it easy to implement in practice.

Remark 3. A smooth and saturated nominal control law (18)
is proposed, instead of the traditional proportional control law
k0(x) = −k(x− x∗) [4], [21], with the aim of generating a
saturated vector field (18). This is justified by the inequality
∥τ (x)∥ ≤ ∥κ0(x)∥ ≤ α, where the equality ∥Π(x)∥ = 1 has
been used. In fact, different types of saturation functions can
be used to design κ0(x) as an alternative, such as the standard
saturation function sat(·), hyperbolic tangent function tanh(·),
arctangent function arctan(·), etc. However, it is worth noting
that these functions may result in the nominal control direction
not aligning directly with the desired position, which in turn
leads to an unnecessarily long path.

C. Adaptive tube-following control

The planning algorithm introduced in Sec. III-B can gener-
ate a collision-free reference trajectory for the WMR. To avoid
conflicts of notations, the reference trajectory is denoted as xd,
which is governed by

ẋd = τd, (23)

where τd is given by (18) but with x replaced by xd. Let us
define the position tracking error as xe := x−xd and impose
an inequality constraint on it as follows:

∥xe(t)∥2 < ρ2, (24)

where ρ > 0 is a user-defined constant. At each time instance,
the actual position x of the virtual control point P is allowed
to stay within a 1-sphere of radius ρ and center xd(t). Unifying
all such spheres along t forms a tube around xd(t), as shown
in Fig. 5. Since a safety margin is considered in the planning
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Tube boundaries

Reference trajectory

Obstacle

Safety margin

Fig. 5. Illustration of the predefined tube.

module, if the tube radius is taken no larger than the size ϵ of
the safety margin and (24) holds for all t ≥ 0, then the actual
trajectory x(t) will remain within the predefined tube without
colliding with any actual obstacles, that is, x ∈ X .

In the following, an adaptive tube-following controller is
developed to achieve high-precision trajectory tracking, while
ensuring that x(t) evolves within the tube defined by (24). To
this end, we define a transformed error

ξ(t) :=
∥xe(t)∥2

ρ2
. (25)

Taking the time derivative of (25), whilst using (3) and (23),
one can easily get

ξ̇ =
2

ρ2
x⊤
e [R(θ)(u+ ud)− τd]. (26)

Inspecting (25) reveals that 0 ≤ ξ(t) < 1 is equivalent
to (24), and ξ(t) = 0 only when xe(t) = 0. Therefore,
the tube-following control problem boils down to achieving
limt→∞ ξ(t) = 0, while ensuring 0 ≤ ξ(t) < 1, ∀t ≥ 0, via
a properly-designed controller. To achieve this, the following
logarithmic barrier function is considered

L =
1

2
ln

1

1− ξ
. (27)

Let z := xe/(ρ
2(1− ξ)). Then, evaluating the time derivative

of L along (26) yields

L̇ = z⊤[R(θ)(u+ ud)− τd]

≤ z⊤(R(θ)u− τd) + d∥z∥, (28)

wherein we have used the fact that ∥R(θ)∥ = 1.
The adaptive control law is designed as

u = R−1(θ)(−kxe + τd −ϖ), (29)

with

ϖ :=
d̂2z√

d̂2∥z∥2 + φ2

, (30)

where d̂ denotes the estimate of d (see Assumption 1 for its
definition) and is updated by a projection-based adaptive law.
Suppose d ∈ Ω := {ν ∈ R | 0 ≤ ν ≤ dm} and let Ωδ := {ν ∈

R | 0 ≤ ν ≤ dm + δ}, where dm > 0 and δ > 0 are known
constants. Inspired by [29], the adaptive law is derived as

˙̂
d = Proj(d̂,Φ), Φ := ∥z∥ − γd̂, (31)

with

Proj(d̂,Φ) =


ηΦ, if 1) 0 ≤ d̂ < dm or

2) d̂ ≥ dm and Φ ≤ 0,

ηΦ̆, if 3) d̂ ≥ dm and Φ > 0,

(32)

where η, γ > 0 are design constants and

Φ̆ =

(
1− d̂− dm

δ

)
Φ. (33)

Note that the projection operator Proj(d̂,Φ) is locally Lipschitz
in (d̂,Φ) [29]. Choosing the initial condition of (31) as d̂(0) ∈
Ωδ , we will now demonstrate that

d̂(0) ∈ Ωδ ⇒ d̂(t) ∈ Ωδ, ∀t ≥ 0. (34)

In Cases 1 and 2, the adaptive law (31) reduces to
˙̂
d = η(∥z∥ − γd̂). (35)

Solving (35) yields

d̂(t) = e−ηγtd̂(t0) + η

∫ t

t0

∥z(τ)∥e−ηγ(t−t0−τ)dτ, (36)

where t0 ≥ 0 marks the beginning of each time interval during
which Cases 1 and 2 hold. Moreover, in these two cases, (34)
holds as a result of the given conditions. In Case 3, however,
(31) becomes

˙̂
d =

δ + dm − d̂

δ
Φ, (37)

which implies that d̂ decreases when d̂ > δ+dm and increases
if d̂ < δ+dm until it reaches δ+dm such that ˙̂

d = 0. Therefore,
the adaptive law (31) ensures that (34) holds. Let us define the
parameter estimation error as d̃ := d̂− d.

Theorem 3. Consider the WMR kinematics (3) under Assump-
tion 1 and suppose that d ∈ Ω. Given the initial position x(0)
satisfying (25), then the adaptive controller (29), together with
the projection-based update law (31), can steer x to track the
reference trajectory xd given by (23) along with the predefined
tube (25), while ensuring uniform ultimate boundedness of the
position error xe and the estimation error d̃.

Proof. Consider the Lyapunov function candidate (LFC):

V = L+
1

2η
d̃2. (38)

Taking the derivative of V and using (28) and (29) lead to

V̇ ≤ −kz⊤xe − z⊤ϖ + d̂∥z∥+ 1

η
d̃(

˙̂
d− η∥z∥). (39)

Invoking the inequality |ν| ≤ ν2/
√
ν2 + φ2+φ for any ν ∈ R

and φ > 0, one gets −z⊤ϖ + d̂∥z∥ ≤ φ. In addition, noting
(26), (28), and Lemma 1, it follows that −kz⊤xe = −kξ/(1−
ξ) ≤ −2kL for all 0 ≤ ξ < 1. As a result, (39) reduces to

V̇ ≤ −2kL+ φ+
1

η
d̃(

˙̂
d− η∥z∥), (40)
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on the set 0 ≤ ξ < 1. To proceed, we consider three cases in
(32). For Cases 1 and 2, it follows from (35) that

d̃(
˙̂
d− η∥z∥) = −ηγd̃d̂. (41)

While for Case 3, we have

d̃(
˙̂
d− η∥z∥) = −ηγd̃d̂− ηd̃(d̂− dm)Φ

δ
≤ −ηγd̃d̂, (42)

which is true because d̃ ≥ 0, d̂−dm ≥ 0, and Φ > 0 according
to the conditions specified in Case 3. In view of (41) and (42),
one can easily get

V̇ ≤ −2kL− γd̃d̂+ φ

≤ −2kL− γ

2
d̃2 + c

≤ −aV + c, (43)

where a := min{2k, ηγ} > 0 and c := γd2/2 + φ > 0.
Integrating both sides of (43) over [0,∞) yields

V (t) ≤
(
V (0)− c

a

)
e−at +

c

a
, ∀t ≥ 0, (44)

showing that V ∈ L∞ and hence L ∈ L∞. The later implies
that 0 ≤ ξ(t) < 1 for all t ≥ 0. As a consequence, x keeps
within the predefined tube (25). As L(t) ≤ V (t), it follows
from (25) and (27) that ∥xe(t)∥ ≤ ρ

√
1− e−2V (t). In addition,

d̃2/(2η) ≤ V (t) leads to |d̃(t)| ≤
√

2ηV (t). As shown in (44),
V (t) is eventually bounded by c/a, whereby one can get

lim sup
t→∞

∥xe(t)∥ ≤ ρ
√
1− e−2c/a, lim sup

t→∞
|d̃(t)| ≤

√
2ηc/a.

Thus, xe and d̃ are uniformly ultimately bounded. □

Remark 4. Based on the facts that ∥R−1(θ)∥ = 1/ℓ (ℓ < 1),
∥τd∥ ≤ ∥κ0(xd)∥ ≤ α (noting (13), (14), and ∥Π(xd)∥ = 1),
and ∥ϖ∥ ≤ d̂ ≤ dm+σ (noting (34)), it can be easily verified
that the adaptive controller (29) is bounded and its bound can
be explicitly expressed as

∥u∥ ≤ 1

ℓ
(kρ+ α+ dm + δ). (45)

This implies that the input constraint ∥u∥ ≤ um can be met
by judiciously choosing the design parameters such that kρ+
α+dm+δ ≤ ℓum. However, it is noted that achieving smaller
convergence bounds for xe and d̃ requires a larger value of k.
Thus, a compromise should be reached according to the robot
actuation capability and performance requirement.

Remark 5. As defined in (1), the kinematics of θ is

θ̇ = ω + ud2, (46)

where ud2 is the second element of ud. Due to the presence
of disturbances, we can only show that the right-hand side of
(46) is bounded. However, it cannot strictly converge to zero,
which would lead to the continuous changes of θ, even if the
WMR has already reached the designated position. To address
this issue, a simple approach is to halt the WMR motion once
x enters a predefined, sufficiently small neighborhood around
the goal position x∗.

IV. SIMULATION RESULTS

In this section, we demonstrate the proposed control method
in a 6.4m×3.4m rectangular workspace W∗ cluttered with 8
circular obstacles, denoted as O∗

i , whose centers and radii are
listed in Table I. The distance between the virtual and actual
control points is ℓ = 0.05m, the radius of the circumscribed
circle around P is r = 0.2m, and the clearance constant in
Assumption 2 is h = 0.2m. The size of the safety margin is
set to ϵ = 0.1m, and the obstacle influence region is specified
by ϵ∗ = 0.2m. The goal location is taken as x∗ = [2.5, 1]⊤ m.
Assume that the control input constraint is um = 1.5, and the
disturbance ud is of the following form

ud = 0.01×
[
sin(0.2t) + 1
cos(0.3t)− 2

]
. (47)

According to Remark 4, the planner parameters are chosen as
α = 0.03 and β = 0.005, while the controller parameters are
chosen as ρ = 0.06, k = 0.1, ψ = 0.005, η = 0.1, γ = 0.01,
dm = 0.03, δ = 0.005, and d̂(0) = 0.01. The simulation
duration is 500 s, and the sample step is 0.01 s.

We begin by verifying the efficiency of the proposed tangent
cone-based path planning method (denoted as “TC-based plan-
ner”) in the absence of disturbances. For comparison purposes,
the PF-based path planning method presented in [30] (denoted
as “PF-based planner”) is also simulated. A slight modification
is made for [30] to facilitate its implementation. The attractive
and repulsive potentials are chosen as

Uatt(xd) =
1

2
ka∥xd − x∗∥2,

Urep(xd) =
1

2
kr

(
8∑

i=0

1

ρi

)
∥xd − x∗∥2,

where ka and kr are positive weights, ρ0 := 1− (xd/2.9)
20−

(yd/1.4)
20, while ρi := ∥xd− ci∥2− (r+ ri+ ϵ)

2, i ∈ I. The
total velocity is then given by

τd = −∇Uatt(xd)−∇Urep(xd). (48)

For fair comparison, we chose the parameters of the PF-based
path planner to be ka = 0.05 and kr = 0.0001, such that the
two planners have nearly identical convergence times. Figure
6 shows the obtained robot navigation trajectories of both path
planners starting at a set of initial positions (purple points). As
can be seen, both planners can successfully guide the virtual
control point P from different initial positions to the goal (red
point), while avoiding all obstacle regions Oϵ

i , i = 1, 2, ..., 8.
However, the proposed planner yields shorter trajectories than
the PF-based one. The comparison results of the velocity norm
∥τd∥ are depicted in Fig. 7, from which it is clear that the PF-
based planner requires larger velocity than the proposed one.
Actually, τd under the proposed planner is upper bounded by
α = 0.03, which is consistent with our analysis in Remark 3.
The above results demonstrate the effectiveness and superiority
of the proposed path planner.

We next illustrate the performance of the proposed adaptive
tube-following controller (29) (denoted as “TF controller”) in
the presence of disturbance given by (47). As a case study, the
trajectory starting from the 3nd initial position is selected as
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TABLE I
GEOMETRICAL DETAILS OF THE OBSTACLES.

Index
Configuration

Index
Configuration

Center (m) Radius (m) Center (m) Radius (m)

O∗
1 [−2,−0.55]⊤ 0.10 O∗

5 [0.4, 0.55]⊤ 0.25

O∗
2 [−0.9, 0.85]⊤ 0.10 O∗

6 [0.7,−0.6]⊤ 0.10

O∗
3 [−0.7,−0.5]⊤ 0.35 O∗

7 [2,−0.6]⊤ 0.25

O∗
4 [−2.1, 0.6]⊤ 0.15 O∗

8 [1.8, 0.7]⊤ 0.15

-3 -2 -1 0 1 2 3
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Fig. 6. Navigation trajectories of the two path planners.
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Fig. 7. Velocity norms of the two path planners.

the reference trajectory (see Fig. 6). For comparison purposes,
the extensively used proportional-integral (PI) controller of the
following form is simulated:

u = −kpxe − ki

∫ t

0

xe(τ)dτ,

where kp = 0.5 and ki = 0.3 are constant gains. Furthermore,
in order to verify the robustness of the PF-based planner (48)
(denoted here as “PF controller”), we execute it in the presence
of disturbances and define the difference between the ideal

and actual trajectories as the position tracking error xe. The
closed-loop responses of these three controllers are shown in
Fig. 8. In the top left subfigure of Fig. 8, the tracking error xe

under both the TF and PI controllers is shown to remain within
a small neighborhood of the origin (but quantitatively, the TF
controller has higher tracking accuracy than the PI controller),
while satisfying the tube constraint (24). However, the PF
controller yields a larger tracking error and violates the tube
constraint. The latter may result in collision with obstacles or
the workspace boundary. The WMR’s heading angle is plotted
in the top right subfigure of Fig. 8, from which it is clear that
θ under the TF and PI controllers is bounded and converges
to a nearly constant value (precisely, the TF controller has a
higher stability), while under the PF controller θ continuously
increases. This implies that the PF controller (i.e., path planner
(48)) is susceptible to disturbances. The control input norm
∥u∥ is shown in the bottom left subfigure of Fig. 8. Obviously,
the control input u of the TF and PI controllers satisfies the
magnitude limits ∥u∥ ≤ um, while the PF controller fails. The
parameter estimate d̂ is given in the bottom right subfigure of
Fig. 8. As can be seen, d̂ remains within the set Ωδ , indicating
the effectiveness of the projection adaptive law (31). Finally,
the position tracking trajectory of the proposed TF controller
(29) is shown in Fig. 9. Intuitively, the virtual control point
P accurately tracks the reference trajectory, while remaining
with the predefined tube. Therefore, the WMR reaches the
goal position without colliding with any obstacles (dark gray
balls), as clearly seen in Fig. 9.

Overall, the proposed integrated path planning and tube-
following control scheme can successfully drive the WMR to
reach the predefined goal without colliding with any obstacles,
despite the presence of input disturbances.

0 100 200 300 400 500
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0.3

0.4
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PI controller
PF controller
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0

10

20

30
TF controller
PI controller
PF controller

0 100 200 300 400 500
0

0.5

1

1.5

2
TF controller
PI controller
PF controller

0 100 200 300 400 500
0.01

0.02

0.03

0.04
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Fig. 8. Closed-loop control responses.

V. EXPERIMENTS

In this section, several experiments are carried out to verify
the effectiveness of the proposed method.
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Fig. 9. Position tracking trajectory with WMR snapshots.

A. Experimental setup

In the experiments, several simple scenarios are considered
where the WMR is tasked with navigating towards a desig-
nated goal location, while ensuring avoidance of any obstacles
en route. The experimental platform is shown in Fig. 10, which
consists of a Mona robot [31] with nonholonomic dynamics,
several hot obstacles containing iron powders that can heat up
themselves, a RGB camera to observe the pose and location
of the WMR, a thermal camera to obtain the size and location
of the hot obstacles, and a control PC to collect feedback data
and send motion commands. The Wi-Fi communication (at a
rate of 10Hz) between the control PC and the robot is built by
ROS. All experiments are performed in an arena with a size of
1.8m × 0.8m. It should be emphasized that since the WMR
in our lab has a very limited sensing capability, the distance
between the WMR and obstacle boundary is obtained in real-
time from the RGB and thermal cameras, rather than sensors
onboard the WMR.

Regarding the robot configuration, we set the radius of the
circle surrounding the robot to r = 0.06m, the parameter for
the change of coordinates to ℓ = −0.02, the safety margin to
ϵ = 0.04m, and the obstacle influence region to ϵ∗ = 0.05m.
In all experiments, the parameters of the path planner are set
to α = 0.03 and β = 0.005, while the controller parameters
are set to ρ = 0.03, k = 1.5, ψ = 0.005, η = 0.1, γ = 0.01,
dm = 0.036, δ = 0.005, and d(0) = 0.01.

B. Experimental results

We here report the results of two representative experiments,
where the extracted thermal image and the RGB image are
merged to record the experimental process. In the first exper-
iment, six obstacles are placed in the arena. The WMR starts
from the left side of the arena (coordinates: [0.27, 0.21]⊤m),
and is tasked with reaching the goal location situated on the
right side (coordinates: [1.73, 0.54]⊤m). The results are shown
in Fig. 11, from which it can be observed that the proposed
path planner generates a collision-free navigation path for the
WMR (i.e., the red line in Fig. 11(a)), and the tube-following
controller guarantees that the WMR tracks the desired path
along with the predefined safe tube. The latter can be seen
from Fig. 11(c), where the norm of the position tracking error
is smaller than the tube width ρ = 0.03m all the time.

In the second experiment, we add two more hot obstacles to
the arena, which makes the environment more complex for the
WMR. In this case, the WMR starts from the right side of the
arena (coordinate: [1.83, 0.68]⊤m) and is required to reach a
goal location at the left side (coordinate: [0.20, 0.40]⊤m). The
experiment results are shown in Fig. 12, where we can observe
similar outcomes as in the first experiment. Our path planner
successfully generates a collision-free navigation path for the
WMR and the tube-following controller drives the WMR to
track the generated path without running out the predefined
tube (see Fig. 12(c)).

Furthermore, we perform multiple trials with different initial
and goal locations to further test the proposed method. From
these experiments, we consistently observe the effectiveness
of our proposed robot navigation algorithm. More details
can be found in the supplementary video (https://vimeo.com/
895801720).

Fig. 10. The experiment setup: (a) experimental platform; (b) cameras; (c)
Mona robot.

Fig. 11. The experimental scenario with six obstacles: (a) the generated path
(red line) and the actual trajectory (black line) of the WMR; (b) screenshots
of the experiment; (c) position error; (d) WMR’s orientation; (e) parameter
estimation d̂.

VI. CONCLUSION

In this paper, we have proposed an integrated path planning
and tube-following control scheme for collision-free naviga-
tion of WMRs in a convex workspace cluttered with multiple
spherical obstacles. A path planner was designed using Bouli-
gand’s tangent cones to generate safe, collision-free motion
paths for the WMR. The resulting vector field asymptotically
guides the WMR from almost all initial configurations in the
free space towards the goal location, without colliding with
any obstacles along the way. Then, an adaptive tube-following

https://vimeo.com/895801720
https://vimeo.com/895801720
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Fig. 12. The experimental scenario with eight obstacles: (a) the generated path
(red line) and the actual trajectory (black line) of the WMR; (b) screenshots
of the experiment; (c) position error; (d) WMR’s orientation; (e) parameter
estimation d̂.

controller was derived, which guarantees that the actual trajec-
tory of the WMR remains within a predefined safe tube around
the reference trajectory, despite the presence of disturbances.
The tube-following control significantly enhances the safety of
robot navigation in the perturbed scenarios. In particular, the
proposed closed-loop navigation strategy can be implemented
using only the local sensing information. Finally, numerical
simulations and experiments illustrate the effectiveness of the
proposed autonomous navigation algorithm. Future work will
focus on reactive collision-free navigation of multiple WMRs.

APPENDIX
PROOF OF THEOREM 2

From (18) and (19), it follows that τ (x) ∈ TXϵ(x) for all
x ∈ Xϵ, which according to Theorem 1 suggests that the free
space Xϵ is forward invariant.

As previously stated, τ (x) is piecewise continuously differ-
entiable, indicating that it is locally Lipschitz on its domain
X [32]. Moreover, the free space X ϵ, as a compact subset of
X , is forward invariant. Then, it follows from [33, Theorem
3.3] that the closed-loop kinematics (11) with x(0) ∈ Xϵ has a
unique solution that is defined for all t ≥ 0. Subsequently, we
show that the unique solution converges to a set of stationary
points. To this end, we consider the following LFC:

W (x) =
1

2
∥x− x∗∥2. (49)

For ease of analysis, (18) is rewritten as

τ (x) = (c(x)I2 + (1− c(x))Π(x))︸ ︷︷ ︸
Θ(x)

κ0(x), (50)

with

c(x) :=


1, if dO(x) > ϵ∗ or

dO(x) ≤ ϵ∗ and κ⊤
0 (x)b(x) ≤ 0,

0, if dO(x) ≤ ϵ∗ and κ⊤
0 (x)b(x) > 0.

(51)

Taking the time derivative of W (x) along (11) and noting (13)
and (50), one gets

Ẇ (x) = −k0(x)(x− x∗)⊤Θ(x)(x− x∗). (52)

Fig. 13. Illustration of the undesired stationary point si.

Since k0(x) > 0 and Π(x) is positive semidefinite, one has

Ẇ (x) ≤ 0, ∀x ∈ Xϵ, (53)

indicating that x = x∗ is a stable equilibrium of (11). From
LaSalle’s invariance principle, it follows that the solution of
(11) asymptotically converges to the set {x ∈ Xϵ | Ẇ (x) =
0}, i.e., a set of stationary points. One can infer from (19) and
(52) that the stationary points correspond to either x = x∗ or
the points satisfying dO(x) = ϵ and κ⊤

0 (x)b(x)/∥κ0(x)∥ =
1. Therefore, for any x(0) ∈ Xϵ, the solution of (11) converges
to the set {x∗}∪n

i=1Si. The set contains n+1 stationary points,
all of which are isolated due to Assumption 2. Geometrically,
the undesired stationary point si ∈ Si (on the boundary of Oϵ

i )
and x∗ are collinear with ci, but located on the opposite sides
of ci, as seen in Fig. 13. As per (52), the analytical form of
si is obtained as follows:

si = (1 + αi)ci − αix
∗, (54)

with αi := (r + ri + ϵ)∥x∗ − ci∥−1.
The isolated stationary points si, i ∈ I may prevent us from

achieving the objective (motion-to-goal). To check the stability
of si, we define a small neighborhood of si, i.e., an open ball
B(si, ϵ′) with 0 < ϵ′ ≤ min{ϵ, ϵ∗−ϵ}, such that κ⊤0 (x)b(x) >
0 holds for all x ∈ B(si, ϵ′). When restricted on B(si, ϵ′), the
feasible set of initial configurations is Fi := Xϵ ∩ B(si, ϵ′),
and x evolves according to

ẋ = −k0(x)(I2 − ϕ(dO(x))b(x)b⊤(x))(x− x∗). (55)

Further define two sets

Mi :=

{
x ∈ Xϵ

∣∣∣∣dOi(x) ≥ ϵ,
κ⊤
0 (x)b(x)

∥κ0(x)∥
= 1

}
, (56)

Ni := ∂Xϵ ∩ B(si, ϵ′). (57)

Geometrically speaking, all elements of Mi form a radial line
extending outward from the stationary point si along si − ci
(see the yellow line in Fig. 13), while all elements of Ni

form a curve, which is a portion of the boundary ∂Oϵ
i (see

the blue curve in Fig. 13). In the following, three cases are
considered: 1) x(0) ∈ B(si, ϵ′) ∩ Mi; 2) x(0) ∈ Ni \ {si};
and 3) x(0) ∈ Fi \ (Mi ∪Ni).
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Case 1): x(0) ∈ B(si, ϵ′) ∩Mi. Note that for all x ∈ Mi,
κ⊤
0 (x)b(x)/∥κ0(x)∥ = 1 holds, whereby (55) reduces to

ẋ = −k0(x)(1− ϕ(dO(x)))(x− x∗). (58)

From (20) and (56), it is evident that 0 ≤ ϕ(dO(x)) ≤ 1 on
the set Mi and ϕ(dO(x)) = 1 only when x = si. Moreover,
k0(x) is strictly larger than 0 by construction. Hence, for all
x ∈ Mi\{si}, the control vector τ (x) (i.e., the right-hand side
of (58)) points directly towards si and becomes zero when x =
si, indicating that the set Mi is forward invariant. Consider
the following LFC:

Wi(x) =
1

2
∥x− si∥2. (59)

The time derivative of Wi(x) along (58) is given by

Ẇi(x) = −k0(x)(1− ϕ(dO(x)))(x− si)
⊤(x− x∗). (60)

Since (x−si)
⊤(x−x∗) ≥ 0 for all x ∈ Mi, one can conclude

from (60) that Ẇi(x) ≤ 0 on the set Mi and Ẇi(x) = 0 only
occurs at x = si. This implies that Mi is a stable manifold
of si and any initial state on it will converge to si. Thus, all
x(0) ∈ B(si, ϵ′) ∩Mi ⊂ Mi will converge to si.

Case 2): x(0) ∈ Ni \ {si}. For all x ∈ Ni \ {si}, we have
dO(x) = ϵ and ϕ(dO(x)) = 1. As such, (55) becomes

ẋ = −k0(x)Q(b(x))(x− x∗), (61)

where Q(b(x)) := I2 − b(x)b⊤(x) is defined for notational
brevity. Consider again the LFC Wi(x) in (59). Then, taking
the time derivative of Wi along (61) and noting (54) and the
fact that (x− ci)

⊤Q(b(x)) = 0, we get

Ẇi(x) = k0(x)αi(x− x∗)⊤Q(b(x))(x− x∗)

− k0(x)(1− αi)(x− ci)
⊤Q(b(x))(x− x∗)

= k0(x)αi(x− x∗)⊤Q(b(x))(x− x∗)

= k0(x)αi(1− cosψ)∥x− x∗∥2 > 0, (62)

where ψ is the angle between the vectors b(x) and κ0(x) and
satisfies 0 < ψ < π/2 for all x ∈ Ni \ {si}. Further consider
the following LFC:

Vi(x) =
1

2
∥x− ci∥2, (63)

whose time derivative along (61) is given by

V̇i(x) = −k0(x)(x− ci)
⊤Q(b(x))(x− x∗) = 0, (64)

showing that for all x ∈ Ni\{si}, the control vector is tangent
to the boundary of Oϵ

i , thus directing the robot to move along
∂Oϵ

i . In view of (62) and (64), we can conclude that if x(0) ∈
Ni\si, then x will keep away from si along ∂Oϵ

i until it leaves
the set B(si, ϵ′).

Case 3): x(0) ∈ Fi \ (Mi ∪ Ni). Actually, for any x ∈
Fi\(Mi∪Ni), it holds that ϕ(dO(x)) ∈ (0, 1), and κ0(x) and
b(x) are not collinear. Moreover, we can decompose τ (x) =
Π(x)κ0(x) into two components: the component τ (x)∥ =
b(x)b⊤(x)τ (x) parallel to b(x) and the component τ (x)⊥ =

(I2−b(x)b⊤(x))τ (x) perpendicular to b(x), as shown in Fig.
13. With (19) in mind, one can verify that

b⊤(x)τ (x)∥ = b⊤(x)τ (x)

= (1− ϕ(dO(x)))b⊤(x)κ0(x) > 0, (65)

which implies that τ (x)∥ and the bearing vector b(x) have the
same direction, causing τ (x)∥ to point towards ci. A straight-
forward calculation yields (I2−b(x)b⊤(x)Π(x) = Q(b(x)),
which allows us to express τ (x)⊥ = Q(b(x))κ0(x). Under
τ (x)⊥, (55) turns to be (61), which results in Ẇi(x) > 0
as seen in (62). Thus, τ (x)⊥ generates a velocity component
tangent to b, causing x to move away from si. Since τ (x) and
the vector si − x are situated on opposite sides of b(x) (see
Fig. 13), x cannot move toward si on the set Fi \ (Mi ∪Ni).
From Fig. 13, one can intuitively observe that τ (x) guides x
towards the boundary of Oϵ

i (attributed to τ (x)∥), while si-
multaneously keeping away from the manifold Mi (attributed
to τ (x)⊥). Therefore, for any x(0) ∈ Fi \ (Mi ∪ Ni), the
solution of (11) will either directly leaves the ball B(si, ϵ′),
or first converges to the set Ni \ {si} and then leaves the ball
B(si, ϵ′) along ∂Oϵ

i (as shown in Case 2).
The three cases above demonstrate that each stationary point

si (i ∈ I) is an unstable fixed point, but there exists one line
of initial conditions, namely the stable manifold Mi, that is
attracted to si. Note that Mi is a 1-dimensional manifold with
boundary and thus has zero measure [34]. As such, x∗ is an
almost globally asymptotically stable equilibrium, with a basin
of attraction consisting of the free space Xϵ, except for a set
of measure zero. Furthermore, as x∗ ∈ int(Xϵ), there certainly
exists r∗ > 0 such that dO(x) > ϵ∗ for all x ∈ B(x∗, r∗). On
the ball B(x∗, r∗), the kinematics reduces to

ẋ = −k0(x)(x− x∗), (66)

It can be easily verified that k0(x) ≥ α/
√

(r∗)2 + β2 on the
ball B(x∗, r∗). Given this, (66) implies the local exponential
stability of x = x∗. Furthermore, by using the inequality |z|−
z2/
√
z2 + β2 ≤ β, ∀z ∈ R, (52) reduces to

Ẇi(x) ≤− α∥x− x∗∥+ αβ

≤−
√
2αWi(x)

1
2 + αβ, (67)

which warrants the locally practical finite-time convergence of
x = x∗ [35, Lemma 3.6]. This completes the proof. □
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